COMMITTENTE

IL RESPONSABILE UNICO DEL PROCEDIMENTO **ALBERTO BITOSSI**

IL DIRETTORE ESECUTORE DEL CONTRATTO ANTONIO ROSSA

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

PROGETTAZIONE

MANDANTARIA

MANDANTE MANDANTE

MANDANTE

ABDR architetti associati srl.

STUDIO ARCHITETTONICO

AREA A SERVIZIO DEL CAPOLINEA NERVI - STRUTTURE:RELAZIONE DI **CALCOLO BOX**

IL PROGETTISTA RESPONSABILE DELL'INTEGRAZIONE		SCALA:
	IL PROGETTISTA RESPONSABILE DELL'INTEGRAZIONE	-
Dott. Ing. Alessandro Peresso	Dott. Ing. Alessandro Peresso	

ENTE TIPO DOC.

OPERA/DISCIPLINA

PROGR.

E 2 1

COMMESSA

0 0

LOTTO FASE

D

 $Z \mid 3$

R|H

F A 5 0 0 1 0 4

REV.

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE	ABDR	23/02/2022	P. Desideri	23/02/2022 A. Peresso	A. Peresso	22 /02 /2022	Autolizzato Data
71	A EMISSIONE					23/02/2022	23/02/2022	
В	REV. A SEGUITO COMMENTI	ABDR	40 (05 (2022	P. Desideri	18/05/2022	A. Peresso	10/05/2020	
В	KEV. A SEGUITO COMMENTI		18/05/2022				18/05/2022	CHIEF
С	EMISSIONE PER COMMENTI	ABDR	07/2022	P. Desideri	07/2022	A. Peresso	07/2022	P MASSIGN
G	EMISSIONE I EN GOMINENTI		07/2022	07/2022		07/2022	The state of	
							1	Sel as
								ORDINE DEGUNE

NOME FILE: E21D-00-D-Z3-RH-FA5200-104-C

n. Elab.:

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI - STRUTTURE: RELAZIONE DI CALCOLO BOX

COMMESSA E21D LOTTO **00 D Z3**

CODIFICA RH DOCUMENTO **FA5200104**

REV.

FOGLIO
3 di 89

INDICE

1.		oduzione	
2.		rimenti Normativi	
3.		prietà dei materiali	
	3.1	Calcestruzzo C25/30 - fondazioni (ex. § 4.1.2 NTC 18)	
	3.2	Acciaio per barre d'armatura B450C (ex. § 11.3.2 NTC 18)	7
	3.3	Acciaio S355J0 (ex. § 4.2.1.1 NTC 18)	
	3.4	Bulloni (ex. § 11.3.4.6 NTC 08)	
		lisi delle sezioni	
	4.1	HEB120	10
	4.2	HEA120	
5.		ichi	
	5.1	Carico vento (Q ₃) (ex. § 3.3 N.T.C.18)	
	5.2	Azione della temperatura (Q4) (ex. § 3.5.5 N.T.C.18)	
	5.3	Carico da manutenzione	17
	5.4	Carico da folla	17
	5.5	Azione sismica	18
	5.5.	.1 Determinazione manuale dei torcenti sismici convenzionali di piano (ex. §	7.2.6
	NTO	C '18)	26
	5.6	Combinazione dei carichi	29
6.	Mod	lello di calcolo	32
7.		lisi dinamica	
8.		ifiche di resistenza - carpenteria metallica	
	8.1	Profilo HEB 120	
	8.1.	1 Verifica di instabilità	
	8.2	Profilo HEA 120	
9.		ifiche di deformazione verticale	
10.		ifiche di deformazione orizzontale	
		ifica delle connessioni	
		1.1 Connessione tipo 1	
	11.3	1	
		Connessione Pilastro-traverso intermedio	
	11.		
	11.		
	11.2		
	11.3	Verifica della connessione in fondazione	
	11.	1	
	11.3	3.2 Verifica dei tirafondi	58

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI
STRUTTURE: RELAZIONE DI CALCOLO BOX

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
E21D	00 D Z3	RH	FA5200104	В	4 di 89

12. Ver	ifica delle fondazioni	62
12.1	CARATTERIZZAZIONE DEL TERRENO	63
12.2	Modello di Calcolo della Fondazione con Winkler	63
12.	2.1 Calcolo della costante elastica di Winkler	64
12.3	Confronto tra modello con fondazione rigida e flessibile	67
12.4	VERIFICHE DI RESISTENZA	69
12.	4.1 Verifiche di Resistenza Geotecnica (A1+M1+R3)	69
12.	4.2 Verifica della fondazione	79
12.	4.3 Verifica Soletta di fondazione	85
12.5	Analisi conclusive in merito alla verifica delle fondazioni	89

1. Introduzione

La presente relazione di calcolo riporta le verifiche strutturali relative ai box da installarsi al di sotto del nuovo capolinea degli autobus da realizzarsi a Genova, quartiere Nervi. I box in oggetto (4) si compongono di profili metallici che realizzano la parte in elevazione, collegati tra loro da giunti sia saldati sia realizzati da bulloni.

Figura 1 Geolocalizzazione - vista in pianta

Figura 2 Vista 3d della carpenteria metallica

2. Riferimenti Normativi

Nella stesura dei calcoli e nella redazione degli elaborati progettuali si è fatto riferimento alle Leggi ed alle Norme tecniche vigenti di seguito riportate:

- D.M. 17.01.2018 [NTC 18]

"Norme tecniche per le costruzioni"

- Circolare 21 Gennaio 2019, n°7

"Istruzioni per l'applicazione dell'"Aggiornamento delle Norme tecniche per le Costruzioni" di cui al decreto ministeriale 17 Gennaio 2018.

- CNR-DT 207/2008

"Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni"

- UNI-EN 1090-1 2013

"Esecuzione delle strutture in acciaio e di alluminio. Parte1: requisiti per la valutazione di conformità dei componenti strutturali".

NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI -

STRUTTURE: RELAZIONE DI CALCOLO BOX

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 E21D
 00 D Z3
 RH
 FA5200104
 B
 7 di 89

3. Proprietà dei materiali

3.1 Calcestruzzo C25/30 - fondazioni (ex. § 4.1.2 NTC 18)

E = 31476 [MPa] : modulo di elasticità

 $\mu = 0.2$: rapporto di Poisson

 $\gamma = 25 \lceil KN/m^3 \rceil$: peso specifico

 $\alpha = 1.0 \cdot 10^{-5} [1/^{\circ}C]$: coefficiente di dilatazione termica

 $f_{bk} = 4.04 [MPa]$: resistenza di caratteristica di aderenza

 $f_{cd} = 14.2[MPa]$: resistenza di calcolo a compressione del cls

 $f_{ctd} = 1.2[MPa]$: resistenza di calcolo a trazione del cls

3.2 Acciaio per barre d'armatura B450C (ex. § 11.3.2 NTC 18)

E = 210000[MPa] :modulo di elasticità

 $f_{tnom} = 540[MPa]$: tensione nominale a carico massimo

 $f_{ynom} = 450[MPa]$: tensione nominale di snervamento

 $f_{yd} = 390[MPa]$:resistenza di calcolo dell'acciaio

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PURBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI - STRUTTURE: RELAZIONE DI CALCOLO BOX

TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 E21D
 00 D Z3
 RH
 FA5200104
 B
 8 di 89

3.3 Acciaio S355J0 (ex. § 4.2.1.1 NTC 18)

E = 210000[MPa] : modulo di elasticità

 $\mu = 0.33$: rapporto di Poisson

 $\gamma = 80 [KN/m^3]$: peso specifico

 $\alpha = 1.2 \cdot 10^{-5} [1/^{\circ}C]$: coefficiente di dilatazione termica

 $f_{tk} = 510[MPa]$: tensione di rottura

 $f_{yk} = 355[MPa]$: tensione caratteristica di snervamento

 $f_{ywd} = 338 [MPa]$: resistenza di progetto dell'acciaio

3.4 Bulloni (ex. § 11.3.4.6 NTC 08)

CLASSE DI RESISTENZA: 8.8

 $f_{yb} = 640 [MPa]$: tensione di snervamento

 $f_{ub} = 800[MPa]$: tensione di rottura

In accordo con le NTC'18, le resistenze a taglio e trazione si determinano come segue.

Resistenza a taglio:

La resistenza a trazione:

$$F_{v,Rd} = \frac{0.6 \cdot f_{ub} \cdot A_{res}}{\gamma_{Mb}}$$

$$F_{t,Rd} = \frac{0.9 \cdot f_{ub} \cdot A_{res}}{\gamma_{Mb}}$$

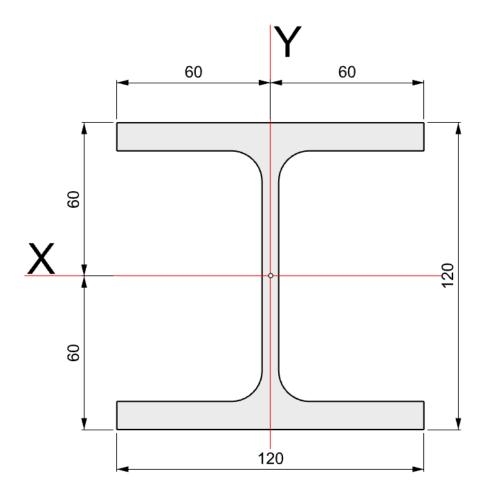
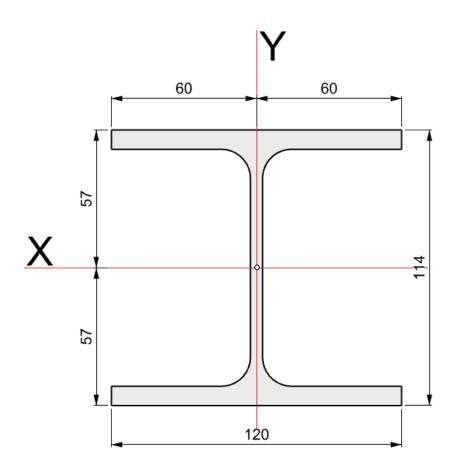

Bullone	Fvrd	Ftrd
	[kN]	[kN]
M12	32	48
M16	50.2	90
M24	135	203

Tabella 1 Valori di resistenza bulloni

4. Analisi delle sezioni

4.1 HEB120



HEB 120				
Parametri	Unità			
Area	Α	34	cm²	
Inerzia	Jx	864	cm ⁴	
	y max	6	cm	
Modulo di resistenza	Wx	144	cm³	
Inerzia	Jу	317	cm ⁴	
	Xmax	6	cm	
Modulo di resistenza	Wy	52.8	cm³	

Tabella 2 Parametri geometrici HEB 120

4.2 HEA120

HEA 120				
Parametri	Unità			
Area	A	25.3	cm²	
Inerzia	Jx	606	cm ⁴	
	y max	<i>5.7</i>	ст	
Modulo di resistenza	Wx	106.3	cm³	
Inerzia	Jу	230	cm ⁴	
	Xmax	6.0	ст	
Modulo di resistenza	Wy	38.3	cm³	

Tabella 3 Parametri geometrici HEA 120

5. Carichi

Peso proprio degli elementi componenti la struttura (G1):

- Calcestruzzo armato = 25.0 [kN/m³];
- Elementi in acciaio = $78.5 [kN/m^3]$.

Peso proprio degli elementi non strutturali (G2):

- Carico permanente portato (Copertura) $G2 = 1.0 [kN/m^2] \cos i$ suddiviso:

Strati	carico
Controsoffitto in cartongesso	$0.15 \left[kN/m^2 \right]$
Lamiera Grecata	$0.06 \left[kN / m^2 \right]$
Sottostruttura metallica	$0.04 \left[kN / m^2 \right]$
Fibrocemento sp.4[cm]	$0.75 \left[kN / m^2 \right]$

Per i carichi variabili si rimanda ai paragrafi successivi.

5.1 Carico vento (Q_3) (ex. § 3.3 N.T.C.18)

La pressione del vento è data dalla seguente espressione:

$$p = q_b \cdot c_e \cdot c_n \cdot c_d$$

Considerando come D la classe di rugosità del terreno, si determina una categoria II di esposizione del sito.

Zona 7	$v_{b,0} = 28[m/s]$	$a_0 = 1000[m]$	$k_a = 0.54 [1/s]$
Categoria sito II	$k_r = 0.19$	$z_0 = 0.05[m]$	$z_{\min} = 4[m]$

Tabella 4 Parametri modellazione azione del vento

Dati questi parametri di input, si determinano i coefficienti dell'espressione vista sopra.

- q_b è la pressione cinetica di riferimento, pari a $q_b = \frac{1}{2} \rho v_b^2 = 50 [kg/m^2]$ dove:
 - ο ρè la densità dell'aria assunta pari a 1.25 kg/mc;
 - o v_b è la velocità di riferimento del vento, pari a 28m/s
- c_e è il coefficiente di esposizione, pari a $c_e(z) = c_e(z_{min}) = 1.8$ [determinabile graficamente dall'immagine sottostante]

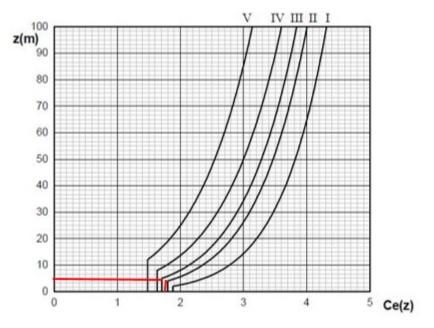


Figura 3 Coefficiente di esposizione

La pressione del vento che si determina è pertanto pari a:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d = 0.9[kN/m^2]$$

Il comportamento aerodinamico degli edifici e in particolare delle loro pareti dipende, principalmente, dai rapporti tra le dimensioni in pianta e in altezza. In particolare, in accordo con il paragrafo G.2 (CNR-DT207-2008), il vento esercita sulle facce delle superfici degli edifici pressioni differenti. Tali pressioni sono quantificate attraverso la definizione di coefficienti di pressione interna ed esterna.

Per quanto riguarda il coefficiente di pressione interna, esso è assunto pari a :

$$c_{p,i} = -0.3$$

$$c_{p.i.}^{} = +0.2$$

Il coefficiente di pressione esterna varia in funzione della posizione analizzata sull'edificio.

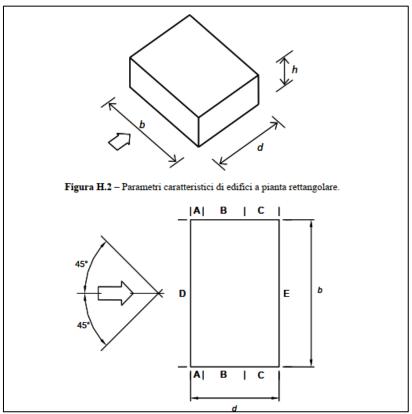


Figura 4 Suddivisione pareti verticali in zone di uguale pressione

A favore di sicurezza, nel seguito si considereranno le sole seguenti zone:

- Zona D zona sopravento;
- Zona A superficie laterale;
- Zona E superficie sottovento.

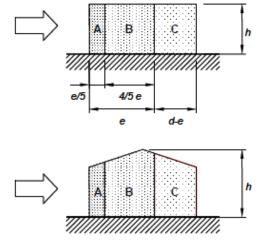


Figura H.4 – Suddivisione delle pareti verticali di edifici a pianta rettangolare in zone di uguale pressione (prospetto).

Tabella H.II - Coefficienti di pressione per le pareti verticali di edifici a pianta rettangolare.

Zona	A	A	I	3	(C	I)	I	Ξ
h/d	Cpe,10	Cpe,1								
5	-1,2	-1,4	-0,8	-1,1	-(),5	+0.8	+1,0	-(),7
1	-1,2	-1,4	-0,8	-1,1	-(),5	+0,8	+1,0	-(),5
≤0,25	-1,2	-1,4	-0,8	-1,1	-(),5	+0,7	+1,0	-(),3

Figura 5 Figura H-4 (CNR DT207-2008)

Pertanto, i valori assunti per le analisi sono i seguenti.

$$\frac{\text{Zona A}}{q = p \cdot (c_{p.e.}^{A} + c_{p.i.}^{+}) = 1.45[kN/m^{2}]}$$

$$\frac{\text{Zona D}}{q = p \cdot (c_{p.e.}^{D} + c_{p.i.}^{-}) = 1.17[kN/m^{2}]}$$

$$\frac{\text{Zona E}}{q = p \cdot (c_{p.e.}^{E} + c_{p.i.}^{+}) = 0.68[kN/m^{2}]}$$

5.2 Azione della temperatura (Q_4) (ex. § 3.5.5 N.T.C.18)

Per la struttura in oggetto si considera una componente di ΔT come azione sollecitante. Il valore viene assunto basandosi sulla tabella qui sotto riportata.

Tab. 3.5.II – Valori di ΔT_u per gli edifici

Tipo di struttura	$\Delta T_{\rm u}$
Strutture in c.a. e c.a.p. esposte	± 15 °C
Strutture in c.a. e c.a.p. protette	± 10 °C
Strutture in acciaio esposte	± 25 °C
Strutture in acciaio protette	± 15 °C

Tabella 5 Valori di ΔT

$$\Delta T = \pm 25^{\circ}C$$

5.3 Carico da manutenzione

In accordo con le NTC '18 (tabella 3.1.II) si assume un carico da manutenzione uniformemente distribuito in copertura pari a:

$$q(M) = 0.50[kN/m^2]$$

5.4 Carico da folla

In accordo con le NTC '18 (tabella 3.1.II – categoria C3) si assume un carico da folla uniformemente distribuito ad una quota pari a 1.20[m] da pavimento finito pari a:

$$H = 3.0[kN/m]$$

5.5 Azione sismica

L'opera oggetto di studio è situata a Genova. Di seguito si riportano i dati utilizzati ed i risultati ottenuti per l'elaborazione degli spettri di risposta, calcolati in direzione orizzontale e verticale per lo stato limite di danno (SLD) e per lo stato limite di salvaguardia della vita (SLV).

- VITA NOMINALE DELL'OPERA, CLASSI D'USO E PERIODO DI RIFERIMENTO (ex. § 2.4 N.T.C.)

 $V_N \ge 50$ anni : Vita nominale di opere ordinarie.

Classe II : Costruzioni il cui uso preveda normali affollamenti (come definito al

paragrafo 2.4.2 delle NTC '18);

 V_R : Periodo di riferimento.

 C_U : Coefficiente d'uso.

Classe II \Rightarrow $C_U = 1.0$

 $V_R = V_N \cdot C_U = 50 \cdot 1.0 = 50 [anni]$

- VALORI DI $\left.a_{g},F_{0},T_{c}^{*}\right.$ PER PERIODO DI RITORNO $\left.T_{R}\right.$

 $a_{\scriptscriptstyle g}$: Accelerazione orizzontale attesa massima al suolo

 F_0 : Valore massimo del fattore di amplificazione dello spettro di acc.orizzontale

 T_{C}^{*} : Periodo di inizio del tratto a velocità cost. dello spettro di acc. orizzontale

 P_{VR} : Probabilità di superamento

 T_R : Periodo di ritorno

Tab. 3.2.I – Probabilità di superamento P_{V_D} in funzione dello stato limite considerato

Stati Limite	\mathbf{P}_{V}	: Probabilità di superamento nel periodo di riferimento ${ m V_R}$
Carati 11 tar 41 tar	SLO	81%
Stati limite di esercizio	SLD	63%
Stati limite ultimi	SLV	10%
Stati limite ultimi	SLC	5%

Tabella 6 Probabilità di superamento al variare dello stato limite considerato (ex. § 3.2.1 NTC 18).

- CATEGORIA DEL SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE (ex. § 3.2.2 N.T.C.)

Categoria "C"

Categoria topografica "T1" : superficie pianeggiante

- VALUTAZIONE DELL'AZIONE SISMICA - SPETTRI DI RISPOSTA

Gli spettri di risposta considerati nel calcolo sono stati ottenuti con il programma di calcolo fornito dal Consiglio Superiore dei Lavori Pubblici. Tale programma permette di ottenere gli spettri di risposta orizzontali e verticali per ogni tipo di stato limite. Per l'opera in oggetto è stato considerato lo stato limite di danno (SLD) e di salvaguardia della vita (SLV).

Parametri considerati (ex. § 3.2.3 NTC 18):

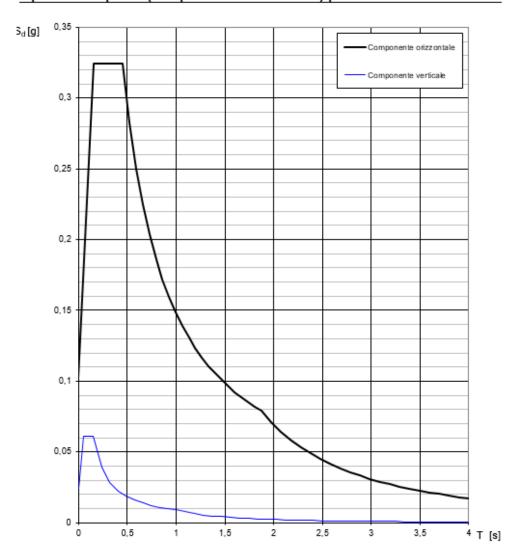
 $\xi = 5\%$: Smorzamento

 $\eta = \sqrt{10/(5+\xi)} = \sqrt{10/(5+5)} = 1$: Fattore di alterazione dello spettro

q : Fattore di comportamento

- Procedimento di calcolo del fattore di comportamento q (ex. § 7.3 NTC 18):

L'intera struttura viene assunta a carattere strutturale NON DISSIPATIVO.


In accordo con quanto definito con il paragrafo 7.3 delle Norme Tecniche vigenti, per gli stati limite SLD ed SLV il limite massimo del fattore di comportamento è pari a 1.5. Per lo stato limite SLO il limite è 1.0.

A favore di sicurezza, si assume un fattore di sicurezza unitario.

Il sisma è stato introdotto nel modello agli elementi finiti nelle tre direzioni principali *x*, *y e z* secondo i seguenti spettri di risposta. Tali spettri sono poi moltiplicati nel modello di calcolo per l'accelerazione di gravità "g".

SPETTRI DI RISPOSTA

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLV

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Tabella 7 Spettro di risposta elastico orizzontale e verticale - SLV

1308

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI -STRUTTURE:RELAZIONE DI CALCOLO BOX

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
E21D	00 D Z3	RH	FA5200104	В	21 di 89

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

STATO LIMITE	SLV
a _o	0,068 g
F _o	2,536
T _c *	0,287 s
Ss	1,500
C _C	1,585
S _T	1,000
q	0,800

Parametri dipendenti

S	1,500
η	1,250
T _B	0,152 s
T _C	0,455 s
T _D	1,873 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C/3$$
 (NTC-07 Eq. 3.2.8)

$$T_c = C_c \cdot T_c^t$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4.0 \cdot a_a / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_{\mathrm{B}} & \quad S_{\mathrm{e}}(T) = a_{\mathrm{g}} \cdot S \cdot \eta \cdot F_{\mathrm{o}} \cdot \left[\frac{T}{T_{\mathrm{B}}} + \frac{1}{\eta \cdot F_{\mathrm{o}}} \left(1 - \frac{T}{T_{\mathrm{B}}} \right) \right] \\ T_{\mathrm{B}} &\leq T < T_{\mathrm{C}} & \quad S_{\mathrm{e}}(T) = a_{\mathrm{g}} \cdot S \cdot \eta \cdot F_{\mathrm{o}} \\ T_{\mathrm{C}} &\leq T < T_{\mathrm{D}} & \quad S_{\mathrm{e}}(T) = a_{\mathrm{g}} \cdot S \cdot \eta \cdot F_{\mathrm{o}} \cdot \left(\frac{T_{\mathrm{c}}}{T} \right) \\ T_{\mathrm{D}} &\leq T & \quad S_{\mathrm{e}}(T) = a_{\mathrm{g}} \cdot S \cdot \eta \cdot F_{\mathrm{o}} \cdot \left(\frac{T_{\mathrm{c}} \cdot T_{\mathrm{D}}}{T^{2}} \right) \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

mu c	ello spettro		
	T [s]	Se [g]	
_	0,000	0,102	
T ⊳ ◀─	0,152	0,325	
Tc◀	0,455	0,325	
	0,523	0,283	
	0,590	0,250	
	0,658	0,225	
	0,725	0,204	
	0,793	0,186	
	0,860	0,172	
	0,928	0,159	
	0,995	0,148	
	1,063	0,139	
	1,130	0,131	
	1,198	0,123	
	1,265	0,117	
	1,333	0,111	
	1,400	0,105	
	1,468	0,101	
	1,535	0,096	
	1,603	0,092	
	1,671	0,088	
	1,738	0,085	
	1,806	0,082	
T₀◀	1,873	0,079	
	1,974	0,071	
	2,076	0,064	
	2,177	0,058	
	2,278	0,053	
	2,380	0,049	
	2,481	0,045	
	2,582	0,042	
	2,683	0,038	
	2,785	0,036	
	2,886	0,033	
	2,987	0,031	
	3,088	0,029	
	3,190	0,027	
	3,291	0,026	
	3,392	0,024	
	3,494	0,023	
	3,595	0,021	
	3,696	0,020	
	3,797	0,019	
	3,899	0,018	
	4,000	0,017	

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dell

Tabella 8 Parametri spettro di risposta elastico orizzontale - SLV

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI - STRUTTURE: RELAZIONE DI CALCOLO BOX

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
E21D	00 D Z3	RH	FA5200104	В	22 di 89

Parametri e punti dello spettro di risposta verticale per lo stato lin\$LV

Parametri indipendenti

STATO LIMITE	SLV
a _{ov}	0,024 g
Ss	1,000
S _T	1,000
q	1,000
T _B	0,050 s
T _C	0,150 s
T _D	1,000 s

Parametri dipendenti

F _v	0,895
S	1,000
η	1,000

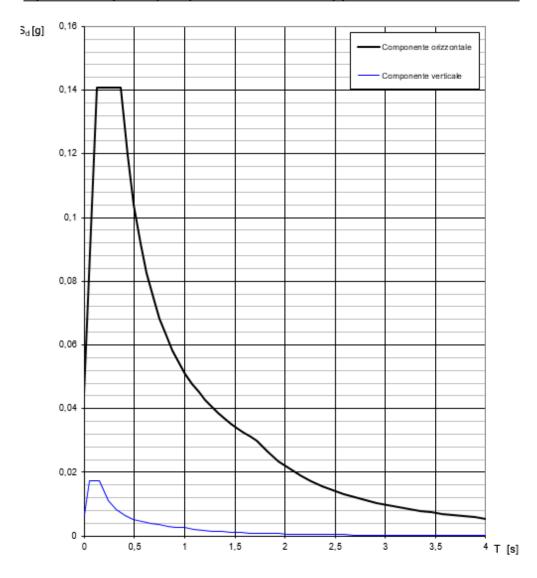
Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$F_v = 1,35 \cdot F_o \cdot \left(\frac{a_w}{g}\right)^{0.5}$$
 (NTC-08 Eq. 3.2.11)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B \\ S_c(T) &= a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_c(T) &= a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D \\ S_c(T) &= a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \\ \end{split}$$


Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,024
T₀ ∢	0,050	0,061
T₀ ∢	0,150	0,061
	0,235	0,039
	0,320	0,029
	0,405	0,023
	0,490	0,019
	0,575	0,016
	0,660	0,014
	0,745	0,012
	0,830	0,011
_	0,915	0,010
T₀◀─	1,000	0,009
	1,094	0,008
	1,188	0,006
	1,281	0,006
	1,375	0,005
	1,469	0,004
	1,563	0,004
	1,656	0,003
	1,750	0,003
	1,844	0,003
	1,938	0,002
	2,031	0,002
	2,125	0,002
	2,219	0,002
	2,313	0,002
	2,406	0,002
	2,500	0,001
	2,594	0,001
	2,688	0,001
	2,781	0,001
	2,875	0,001
	2,969	0,001
	3,063	0,001
	3,156	0,001
	3,250	0,001
	3,344	0,001
	3,438	0,001
	3,531	0,001
	3,625	0,001
	3,719	0,001
	3,813	0,001
	3,906	0,001
	4,000	0,001

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Tabella 9 Parametri spettro di risposta elastico verticale - SLV

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLD

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Figura 6 Spettro di risposta elastico orizzontale - SLD

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

4308

NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI - STRUTTURE: RELAZIONE DI CALCOLO BOX

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 E21D
 00 D Z3
 RH
 FA5200104
 B
 24 di 89

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LD

Parametri indipendenti		
STATO LIMITE	SLD	
a _o	0,030 g	
F.	2,525	
T _c '	0,207 s	
Ss	1,500	
Co	1,767	
S⊤	1,000	
q	0,800	

Parametri dipendenti

 $T_B = T_C/3$

S	1,500
η	1,250
T _B	0,122 s
T _c	0,365 s
T _D	1,719 s

Espressioni dei parametri dipendenti

$$\begin{split} \mathbb{S} = & \mathbb{S}_S \cdot \mathbb{S}_T & \text{(NTC-08 Eq. 3.2.5)} \\ \eta = & \sqrt{10/(5 + \xi)} \geq 0,55; \; \eta = 1/q & \text{(NTC-08 Eq. 3.2.6; §. 3.2.3.5)} \end{split}$$

(NTC-07 Eq. 3.2.8)

$$T_{c} = C_{c} \cdot T_{c}^{t}$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4,0 \cdot a_{\mu} / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq & T < T_B \\ & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq & T < T_C \\ & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \\ & T_C \leq & T < T_D \\ & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq & T \\ \end{split}$$

Lo spettro di progetto $S_4(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_4(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta			
	T [s]	Se [g]	
	0,000	0,045	
T⊮ ⋖	0,122	0,141	
T⊲ 	0,365	0,141	
	0.400		

	0,122	0,141
Τℯ◀−	0,365	0,141
	0,430	0,120
	0,494	0,104
	0,559	0,092
	0,623	0,082
	0,687	0,075
	0,752	0,068
	0,816	0,063
	0,881	0,058
	0,945	0,054
	1,010	0,051
	1,074	0,048
	1,139	0,045
	1,203	0,043
	1,268	0,041
	1,332	0,039
	1,397	0,037
	1,461	0,035
	1,526	0,034
	1,590	0,032
	1,654	0,031
T₀ ⋖ −	1,719	0,030
	1,828	0,026
	1,936	0,024
	2,045	l 0.004 l
	2,040	0,021
	2,153	0,021
	2,153	0,019
	2,153 2,262	0,019 0,017
	2,153 2,262 2,371	0,019 0,017 0,016
	2,153 2,262 2,371 2,479	0,019 0,017 0,016 0,014
	2,153 2,262 2,371 2,479 2,588	0,019 0,017 0,016 0,014 0,013
	2,153 2,262 2,371 2,479 2,588 2,697	0,019 0,017 0,016 0,014 0,013 0,012
	2,153 2,262 2,371 2,479 2,588 2,697 2,805	0,019 0,017 0,016 0,014 0,013 0,012 0,011
	2,153 2,262 2,371 2,479 2,588 2,697 2,805 2,914 3,022 3,131	0,019 0,017 0,016 0,014 0,013 0,012 0,011 0,010
	2,153 2,262 2,371 2,479 2,588 2,697 2,805 2,914 3,022 3,131 3,240	0,019 0,017 0,016 0,014 0,013 0,012 0,011 0,010 0,010 0,009 0,008
	2,153 2,262 2,371 2,479 2,588 2,697 2,805 2,914 3,022 3,131	0,019 0,017 0,016 0,014 0,013 0,012 0,011 0,010 0,010 0,009
	2,153 2,262 2,371 2,479 2,588 2,697 2,805 2,914 3,022 3,131 3,240	0,019 0,017 0,016 0,014 0,013 0,012 0,011 0,010 0,010 0,009 0,008
	2,153 2,262 2,371 2,479 2,588 2,697 2,805 2,914 3,022 3,131 3,240 3,348 3,457 3,566	0,019 0,017 0,016 0,014 0,013 0,012 0,011 0,010 0,000 0,009 0,008 0,008 0,007
	2,153 2,262 2,371 2,479 2,588 2,697 2,805 2,914 3,022 3,131 3,240 3,348 3,457	0,019 0,017 0,016 0,014 0,013 0,012 0,011 0,010 0,010 0,009 0,008 0,008 0,007
	2,153 2,262 2,371 2,479 2,588 2,697 2,805 2,914 3,022 3,131 3,240 3,348 3,457 3,566 3,674 3,783	0,019 0,017 0,016 0,014 0,013 0,012 0,011 0,010 0,010 0,009 0,009 0,008 0,008 0,007 0,007
	2,153 2,262 2,371 2,479 2,588 2,697 2,805 2,914 3,022 3,131 3,240 3,348 3,457 3,566 3,674	0,019 0,017 0,016 0,014 0,013 0,012 0,011 0,010 0,010 0,009 0,009 0,008 0,008 0,007 0,007

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dell

Tabella 10 Parametri spettro di risposta elastico orizzontale - SLD

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI -STRUTTURE:RELAZIONE DI CALCOLO BOX

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
E21D	00 D Z3	RH	FA5200104	В	25 di 89

Parametri e punti dello spettro di risposta verticale per lo stato lirichi.

Parametri indipendenti STATO LIMITE SLD 0,007 g 1,000 1,000 1,000 0,050 s 0,150 s1,000 s

Parametri dipendenti

F _v	0,588
S	1,000
η	1,000

Espressioni dei parametri dipendenti

$$\mathbb{S} = \mathbb{S}_{\mathbb{S}} \cdot \mathbb{S}_{\mathbb{T}} \tag{NTC-08 Eq. 3.2.5}$$

$$F_v = 1.35 \cdot F_o \cdot \left(\frac{a_x}{g}\right)^{0.5}$$
 (NTC-08 Eq. 3.2.11)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 \leq T < T_B & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C \leq T < T_D & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

	T [s]	Se [g]
Γ	0,000	0,007
4	0,050	0,017
4	0,150	0,017
Γ	0,235	0,011
	0,320	0,008
	0,405	0,006
	0,490	0,005
ı	0,575	0,005
ı	0,660	0,004
	0,745	0,004
	0,830	0,003
ı	0,915	0,003
4	1,000	0,003
Γ	1,094	0,002
ı	1,188	0,002
ı	1,281	0,002
ı	1,375	0,001
ı	1,469	0,001
ı	1,563	0,001
ı	1,656	0,001
ı	1,750	0,001
ı	1,844	0,001
ı	1,938	0,001
ı	2,031	0,001
ı	2,125	0,001
ı	2,219	0,001
	2,313	0,000
ı	2,406	0,000
	2,500	0,000
ı	2,594	0,000
	2,688	0,000
	2,781	0,000
	2,875	0,000
	2,969	0,000
	3,063	0,000
	3,156	0,000
	3,250	0,000
Ī	3,344	0,000
Ī	3,438	0,000
ı	3,531	0,000
ı	3,625	0,000
ı	3,719	0,000
ı	3,813	0,000
ı	3,906	0,000
- H	4,000	0,000

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Tabella 11 Parametri spettro di risposta elastico verticale - SLD

5.5.1 Determinazione manuale dei torcenti sismici convenzionali di piano (ex. § 7.2.6 NTC '18)

Le attuali Norme Tecniche per le costruzioni, al paragrafo 7.2.6, richiedono di attribuire un'eccentricità accidentale al baricentro delle masse rispetto alla sua posizione originale, in modo da tener conto della variabilità spaziale del moto sismico, nonché di eventuali incertezze nella distribuzione delle masse. Questa eccentricità nella normativa viene assunta convenzionalmente pari al 5% della dimensione dell'edificio misurata perpendicolarmente alla direzione del sisma.

Le combinazioni con eccentricità accidentale vengono prese in considerazione aggiungendo un equivalente momento torcente di piano: questo viene determinato come il prodotto tra le forze statiche di piano e la suddetta eccentricità accidentale. Le forze statiche vengono valutate come forze di inerzia indotte dall'azione sismica, considerando le masse concentrate a livello degli impalcati. Nel modello di calcolo tale azione viene inserita sia con segno positivo sia con segno negativo in modo da massimizzare gli effetti sulla struttura.

Il centro di massa, in ogni direzione considerata, deve essere spostato di una distanza pari al 5% della dimensione dell'edificio in direzione perpendicolare all'azione sismica. A favore di sicurezza, si determina il momento torcente sismico per il box di superficie maggiore e lo si assume per tutti e quattro i box in oggetto.

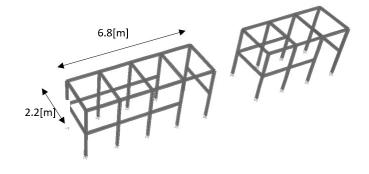


Figura 7 3d edificio

$$e_{ax} = \pm 0.05 \cdot 2.2 = \pm 0.11[m]$$

$$e_{ay} = \pm 0.05 \cdot 6.8 = \pm 0.34[m]$$

Le forze statiche vengono determinate così come indicato al paragrafo 7.3.3.2 delle Norme Tecniche delle Costruzioni del 2018 (analisi lineare statica).

$$F_i = F_h \cdot z_i \cdot \frac{W_i}{\sum_j z_j W_j}$$
 Forze statiche di piano; (ex. § 7.3.3.2 NTC 18)

 $F_h = S_d(T_1) \cdot W \cdot \lambda_i / g$ è la forza di taglio alla base relativa al modo considerato;

F_i è la forza da applicare alla massa i-esima;

W_i e W_j sono i pesi, rispettivamente, della massa i e della massa j;

z_i e z_j sono le quote, rispetto al piano di fondazione , delle masse i e j;

La massa del piano di copertura viene valutata in ambito sismico secondo la seguente formulazione:

$$G_1 + G_2 + \sum_j \psi_{2j} Q_{kj}$$

dove i carichi permanenti non sono fattorizzati, mentre il coefficiente ψ_{2j} vale 0.0 per il carico neve, vento, temperatura e manutenzione.

Considerando un'area in pianta dell'edificio di circa 15m², si valuta la massa sismica per la copertura.

$$w_{Copertura} = G_1 + G_2 + \sum_j \psi_{2j} Q_{kj} \approx 8 + 15 = 23[kN]$$

Impalcato	z (m)	Wi (kN)
Copertura	4.5	23

Tabella 10 Masse concentrate a livello degli impalcati in elevazione.

Cautelativamente si assume S_d(T) pari al massimo valore dello spettro di risposta.

Copertura

$$F_h = S_d(T_1) \cdot W \cdot \lambda_i / g = 0.325 \cdot 23 \cdot 1 = 7.4[kN]$$
:SLV
$$F_h = S_d(T_1) \cdot W \cdot \lambda_i / g = 0.141 \cdot 23 \cdot 1 = 3.2[kN]$$
:SLD

<u>SLV</u>

Sisma in direzione x		$S_d(T) = 0.325g$	
Impalcato	F _i (kN)	e_y (m) $Mt = F_i \cdot e_y$ (kNm)	
Copertura	7.4	±0.34	2.5

Sisma in direzione y		$S_{d}(T) = 0.507g$	
Impalcato	F _i (kN)	e_X (m) $Mt = F_i \cdot e_y$ (kNm)	
copertura	7.4	±0.11	0.8

Tabella 11 Momenti torcenti di piano equivalenti ad un'eccentricità del 5% per le combinazioni allo SLV.

<u>SLD</u>

Sisma in direzione x		$S_{d}(T) = 0.141g$	
Impalcato	F _i (kN)	e_y (m) $Mt = F_i \cdot e_y$ (kNm)	
Copertura	3.2	±0.34	1.09

Sisma in di	rezione y	$S_{d}(T) = 0.199g$		
Impalcato	F _i (kN)	$ex (m)$ $Mt = F_i \cdot e_y (kNm)$		
copertura	3.2	±0.11	0.35	

Tabella 11 Momenti torcenti di piano equivalenti ad un'eccentricità del 5% per le combinazioni allo SLD.

I momenti torcenti determinati vengono applicati alla copertura della struttura e combinati con le altre azioni in gioco come definito nel capitolo seguente.

43)8

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI -STRUTTURE:RELAZIONE DI CALCOLO BOX COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
E21D 00 D Z3 RH FA5200104 B 29 di 89

5.6 Combinazione dei carichi

Ai fini delle verifiche degli stati limite i carichi sopra citati sono stati combinati nel seguente modo (ex. § 2.5.3 NTC 18):

- Combinazione quasi permanente (SLE):

$$G_1 + G_2 + P + \sum_{j=1}^{n} \psi_{2j} \cdot Q_{Kj}$$

- Combinazione fondamentale (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q} \cdot \left[Q_{K1} + \sum_{j=2}^n \psi_{0j} \cdot Q_{Kj} \right]$$

- Combinazione caratteristica rara (SLE):

$$G_1 + G_2 + P + Q_{K1} + \left(\sum_{j=2}^n \psi_{0j} \cdot Q_{Kj}\right)$$

- Combinazione sismica (SLD - SLV):

$$E + G_1 + G_2 + P + \sum_{j=1}^{n} \psi_{2j} \cdot Q_{Kj}$$

dove:

 G_1 = carico permanente strutturale (peso proprio struttura)

 G_2 = carico permanente non strutturale

 Q_{K_i} = carico variabile: Q_{K_1} = carico variabile primario

 $Q_{K2}; Q_{K3}.... =$ carichi variabili secondari

E = azione sismica

 γ_{Gi} ; γ_{Oi} ; γ_P = coefficienti parziali di sicurezza (ex. § 2.6.1 NTC 18)

 $\psi_{0j}; \psi_{1j}; \psi_{2j} =$ coefficienti di combinazione (ex. § 2.5.2 NTC 18)

- Coefficienti parziali per i carichi di esercizio:

 $\gamma_{G1} = 1.3$: coefficiente per i carichi permanenti <u>strutturali</u>

 $\gamma_{G2} = 1.5$: coefficiente per i carichi permanenti <u>non</u> strutturali

 $\gamma_{Qi} = 1.5$: coefficiente per i carichi <u>variabili - SLU</u>

- coefficiente per i carichi <u>variabili</u> ψ_i :

Tab. 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψο	Ψ_{1j}	Ψ2j
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B - Uffici	0,7	0,5	0,3
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso \leq 30 kN)	0,7	0,7	0,6
Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H - Coperture accessibili per sola manutenzione	0,0	0,0	0,0
Categoria I – Coperture praticabili Categoria K – Coperture per usi speciali (impianti, eliporti,)	da valutarsi caso p caso		iso per
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Tabella 12 Valori dei coefficienti di combinazione

COMBINAZIONI	G1	G2	Q1 _{folla}	Q2 _{man} .	Q3vento	Q4 ΔT	EX	EY	EZ	Mt(+/-)
Comb. 1 - SLU _{folla}	1.3	1.5	1.5	0.0	0.9	0.9	/	/	/	/
Comb. 2 - SLUmanutenzione	1.3	1.5	1.05	1.5	0.9	0.9	/	/	/	/
Comb. 3 - SLU _{VENTO}	1.3	1.5	1.05	0.0	1.5	0.9	/	/	/	/
Comb. 4 – SLU _{AT}	1.3	1.5	1.05	0.0	0.9	1.5	/	/	/	/
Comb. 5 - SLE _{NEVE}	1.0	1.0	1.0	0.0	0.6	0.6	/	/	/	/
Comb. 6 - SLEMANUTENZIONE	1.0	1.0	0.7	1.0	0.6	0.6	/	/	/	/
Comb. 7 - SLE _{VENTO}	1.0	1.0	0.7	0.0	1.0	0.6	/	/	/	/
Comb.8 - SLE AT	1.0	1.0	0.7	0.0	0.6	1.0	/	/	/	/
Comb. 9 - Quasi perm.	1.0	1.0	0.0	0.0	0.0	0.0	/	/	/	/
Comb. 10 - SLV X + ecc+/-	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.3	0.3	1.0
Comb. 11 - SLV Y + ecc+/-	1.0	1.0	0.0	0.0	0.0	0.0	0.3	1.0	0.3	1.0
Comb. 12 - SLV Z + ecc+/-	1.0	1.0	0.0	0.0	0.0	0.0	0.3	0.3	1.0	1.0
Comb. 13 - SLD X + ecc+/-	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.3	0.3	1.0
Comb. 14 - SLD Y + ecc+/-	1.0	1.0	0.0	0.0	0.0	0.0	0.3	1.0	0.3	1.0
Comb. 15 - SLD Z + ecc+/-	1.0	1.0	0.0	0.0	0.0	0.0	0.3	0.3	1.0	1.0

Tabella 13 Combinazioni di carico

Per ottenere un controllo più agevole sui risultati del calcolo sono stati introdotti gli inviluppi delle combinazioni esaminate:

INVILUPPO	COMBINAZIONI					
SLU	Comb.1 + Comb.2 + Comb.3 + Comb.4					
SLE	Comb.5 + Comb.6 + Comb.7 + Comb.8					
SLV	Comb.10 + Comb.11 + Comb.12					
SLD	SLD Comb.13 + Comb.14 + Comb.15					

Tabella 14 Inviluppo delle combinazioni di carico

6. Modello di calcolo

Il modello di calcolo dei quattro box si compone di elementi tipo 'frame' per simulare le travi e i pilastri in acciaio. Per quanto riguarda la copertura e le pareti verticali, si adottano elementi tipo 'shell' privi di rigidezza, col solo compito di distribuire in maniera uniforme i carichi in gioco.

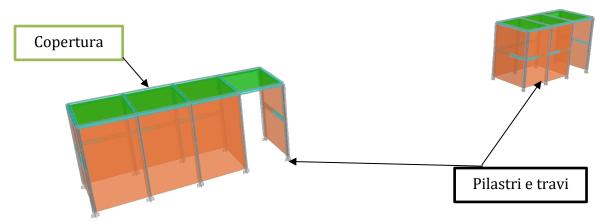


Figura 8 Modello di calcolo carpenteria metallica

Il carico di manutenzione si applica in maniera uniformemente distribuita sulle coperture, come si evince dall'immagine sottostante.

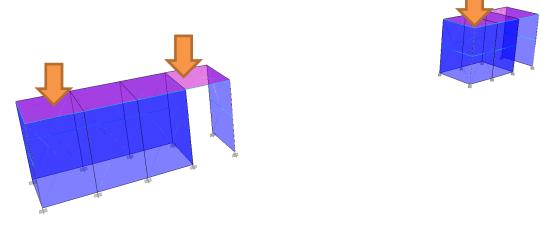


Figura 9 Applicazione carico neve e manutenzione

Il carico vento si applica secondo le due direzioni principali in pianta. Per ciascun verso di applicazione del carico, su ciascuna faccia si generano valori di pressione e depressione così come descritto al paragrafo 5.1

S.S.A. ABCHITETT ASSOCIATE	PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FOR TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CO					
NOME DOCUMENTO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
AREA A SERVIZIO DEL CAPOLINEA NERVI -	E21D	00 D Z3	RH	FA5200104	В	33 di 89
STRUTTURE:RELAZIONE DI CALCOLO BOX	E21D	00 D Z3	Kfl	FA5200104	В	33 ui 89

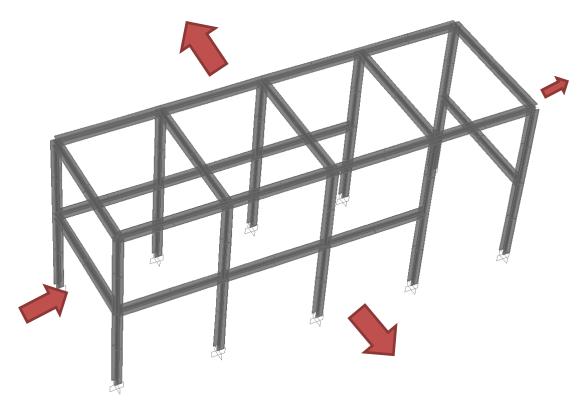


Figura 10 Applicazione carico vento

 $In fine \ il \ carico \ da \ folla \ si \ applica \ in \ maniera \ uniformemente \ distribuita \ a \ quota \ 1.20[m] \ da \ terra.$

7. Analisi dinamica

In prima istanza è necessario valutare il comportamento dinamico della struttura. In accordo con il paragrafo 7.3.3.1 delle NTC'18, l'utilizzo di un'analisi lineare dinamica per la valutazione delle azioni sismiche (analisi modale) richiede di considerare una massa totale partecipante almeno pari all'85% di quella sismica globale. Pertanto, si riportano nel seguito i modi di vibrare della struttura che vengono considerati.

Modo	Periodo	UX	UY	UZ	SumUX	SumUY	SumUZ
N°	[s]	%/100	%/100	%/100	%/100	%/100	%/100
1	0,15	0,31	0,00	0,00	30,9%	0,0%	0,1%
2	0,12	0,00	0,54	0,18	30,9%	54,2%	18,1%
3	0,12	0,01	0,11	0,27	31,6%	65,5%	45,5%
4	0,12	0,58	0,00	0,00	89,9%	65,9%	45,6%
5	0,11	0,00	0,16	0,37	90,1%	81,8%	82,5%
6	0,09	0,00	0,01	0,00	90,2%	82,8%	82,6%
7	0,09	0,00	0,00	0,00	90,4%	83,1%	82,7%
8	0,06	0,00	0,08	0,07	90,5%	91,4%	90,0%
9	0,05	0,00	0,00	0,01	90,5%	91,4%	91,4%
10	0,04	0,04	0,00	0,00	94,3%	91,6%	91,4%
11	0,03	0,00	0,00	0,00	94,3%	91,6%	91,4%
12	0,01	0,00	0,00	0,00	94,3%	91,6%	91,4%

Tabella 15 Modi di vibrare e percentuale di massa partecipante

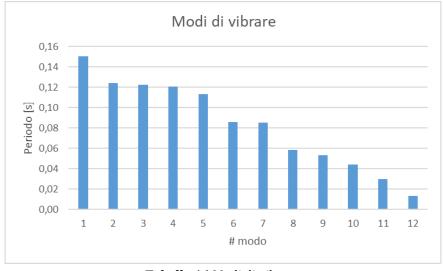


Tabella 16 Modi di vibrare

NOME DOCUMENTO

STRUTTURE:RELAZIONE DI CALCOLO BOX

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

AREA A SERVIZIO DEL CAPOLINEA NERVI -

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
E21D	00 D Z3	RH	FA5200104	В	35 di 89

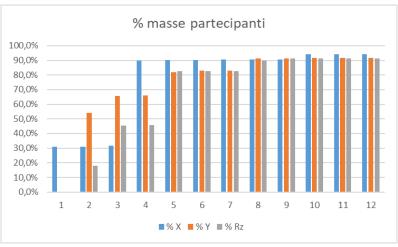


Tabella 17 Percentuali di massa partecipante

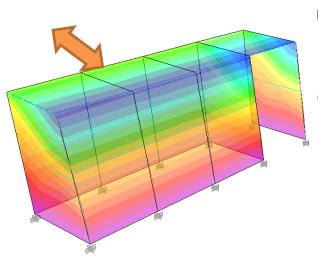


Figura 11 Primo modo di vibrare

8. Verifiche di resistenza - carpenteria metallica

Nel seguito si riportano le verifiche di resistenza di tutti gli elementi strutturali.

8.1 Profilo HEB 120

Nelle seguenti tabelle si riportano le sollecitazioni ottenute dall'inviluppo delle due combinazioni di carico che si assumono per la verifica dei profili metallici: SLU ed SLV.

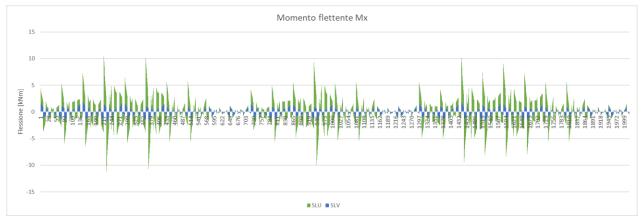


Tabella 18 Flessione Mx

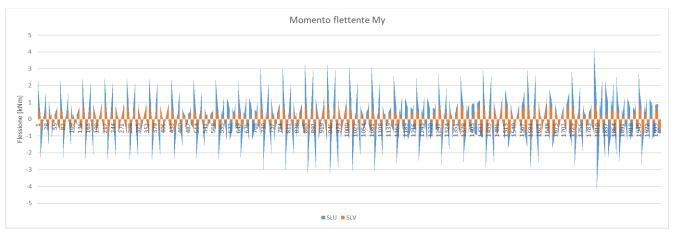


Tabella 19 Flessione My

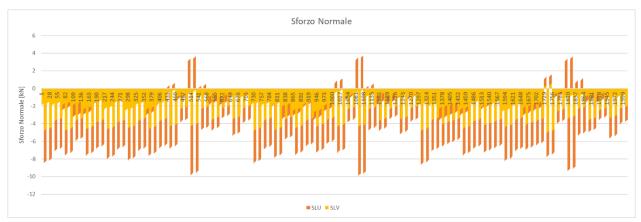


Tabella 20 Sforzo normale

Ai fini della verifica dei profili in oggetto, si assume il seguente criterio di verifica.

$$\sigma = \frac{M_x}{w_x} + \frac{M_y}{w_y} + \frac{N}{A} < f_{yd}$$

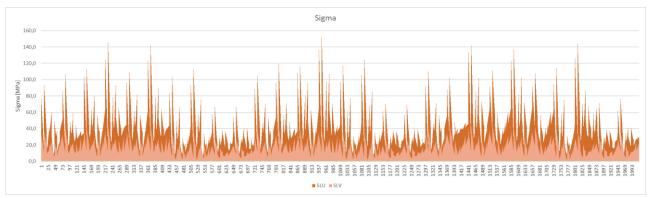


Tabella 21 Tensioni massime

Come si evince dal grafico sopra, le tensioni massime risultano inferiori alla tensione di progetto dell'acciaio S355 (si rimanda al paragrafo 3.3 per le caratteristiche meccaniche dell'acciaio). Pertanto si può affermare come le verifiche tensionali per il profilo HEB 120 risultino soddisfatte.

8.1.1 Verifica di instabilità

Per le sole colonne si effettua una verifica di instabilità.

A favore di sicurezza, si assumono i valori massimi di ciascuna delle tre sollecitazioni determinate sulla stessa sezione.

$$\frac{N_{Ed} \cdot \gamma_{M1}}{\chi_{\min} \cdot f_{yk} \cdot A} + \frac{M_{2,Ed} \cdot \gamma_{M1}}{f_{yk} \cdot W_2 \cdot \left(1 - \frac{N_{Ed}}{N_{cr,2}}\right)} + \frac{M_{3,Ed} \cdot \gamma_{M1}}{f_{yk} \cdot W_3 \cdot \left(1 - \frac{N_{Ed}}{N_{cr,3}}\right)} \le 1.00$$

• Meccanismo di instabilità intorno all'asse X

$$N_{cr} = \frac{\pi^2 \cdot EJ}{\left(l_0\right)^2} = \frac{\pi^2 \cdot 2100000 \left[kg / cm^2\right] \cdot 864 \left[cm^4\right]}{\left(300\right)^2 \left[cm^2\right]} = 1987 \left[kN\right]$$

$$\overline{\lambda} = \sqrt{\frac{A \cdot f_{yk}}{N_{cr}}} = 0.78$$

$$\Phi = 0.5 \cdot \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right] = 0.95$$

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} = 0.68 < 1$$

Meccanismo di instabilità intorno all'asse Y

$$N_{cr} = \frac{\pi^2 \cdot EJ}{(l_0)^2} = \frac{\pi^2 \cdot 2100000 \left[kg / cm^2 \right] \cdot 317 \left[cm^4 \right]}{(300)^2 \left[cm^2 \right]} = 729 \left[kN \right]$$

$$\overline{\lambda} = \sqrt{\frac{A \cdot f_{yk}}{N_{cr}}} = 1.29$$

$$\Phi = 0.5 \cdot \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right] = 1.59$$

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} = 0.39$$

Massime	Massime $N_{_{Ed}}$		$M_{_{x,Ed}}$		
sollecitazioni alla comb. SLU	kN	kNm	kNm		
Massima in valore ass.	9	4.0	11.0		

$$\frac{N_{Ed} \cdot \gamma_{M1}}{\chi_{\min} \cdot f_{yk} \cdot A} + \frac{M_{2,Ed} \cdot \gamma_{M1}}{f_{yk} \cdot W_2 \cdot \left(1 - \frac{N_{Ed}}{N_{cr,2}}\right)} + \frac{M_{3,Ed} \cdot \gamma_{M1}}{f_{yk} \cdot W_3 \cdot \left(1 - \frac{N_{Ed}}{N_{cr,3}}\right)} = 0.20 + 0.26 + 0.24 = 0.69 \le 1.00$$

[ok, verificato]

Si sottolinea come, a favore di sicurezza, non si è tenuto conto della presenza dei traversi di irrigidimento che collegano fra di loro i montanti nella loro mezzeria.

8.2 Profilo HEA 120

Nelle seguenti tabelle si riportano le sollecitazioni ottenute dall'inviluppo delle due combinazioni di carico che si assumono per la verifica dei profili metallici: SLU ed SLV.

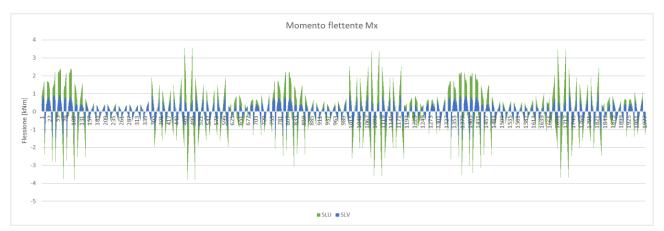


Tabella 22 Flessione Mx

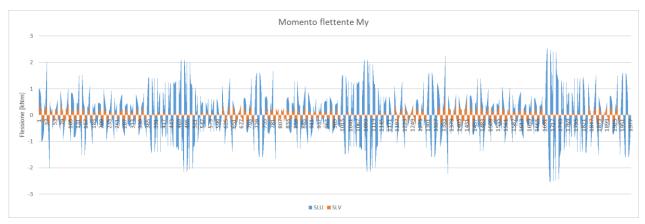


Tabella 23 Flessione My

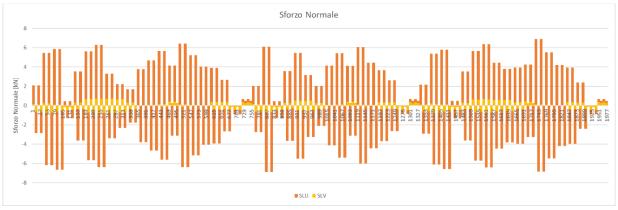


Tabella 24 Sforzo normale

Ai fini della verifica dei profili in oggetto, si assume il seguente criterio di verifica.

$$\sigma = \frac{M_x}{w_x} + \frac{M_y}{w_y} + \frac{N}{A} < f_{yd}$$

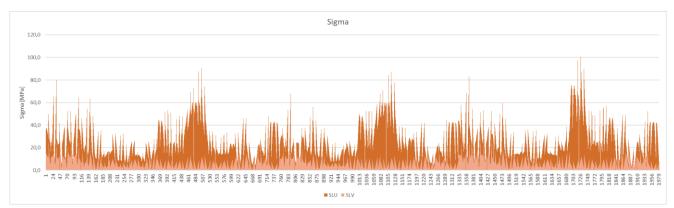
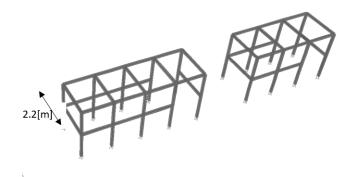


Tabella 25 Tensioni massime

Come si evince dal grafico sopra, le tensioni massime risultano inferiori alla tensione di progetto dell'acciaio S355 (si rimanda al paragrafo 3.3 per le caratteristiche meccaniche dell'acciaio). Pertanto si può affermare come le verifiche tensionali per il profilo HEA 120 risultino soddisfatte.

9. Verifiche di deformazione verticale

In esercizio, combinazione di carico SLE, è possibile determinare il massimo spostamento verticale della copertura.


Per coperture in generale, il limite imposto da Normativa è pari a L/200. Nel caso in oggetto la luce 'L' viene assunta pari alla massima distanza fra i pilastri.

Tab. 4.2.XII - Limiti di deformabilità per gli elementi di impalcato delle costruzioni ordinarie

	Limiti superiori p menti ver	~ -		
Elementi strutturali	$\frac{\delta_{max}}{L}$	$\frac{\delta_2}{L}$		
Coperture in generale	$\frac{1}{200}$	$\frac{1}{250}$		
Coperture praticabili	$\frac{1}{250}$	$\frac{1}{300}$		
Solai in generale	1 250	1 300		
Solai o coperture che reggono intonaco o altro materiale di finitura fragile o tramezzi non flessibili	1 250	1 350		
Solai che supportano colonne	$\frac{1}{400}$	1 500		
Nei casi in cui lo spostamento può compromettere l'aspetto dell'edificio	$\frac{1}{250}$			
I aspetto dell'edificio In casa di specifiche esigenze tecniche ela funzionali tali limiti denoma essere				

 $In\ caso\ di\ specifiche\ esigenze\ tecniche\ e/o\ funzionali\ tali\ limiti\ devono\ essere\ opportunamente\ ridotti.$

Tabella 26 Limite di deformabilità

 $\delta_{\text{max}} = 220 / 200 = 11[mm]$

COMB.6 - SLE manutenzione

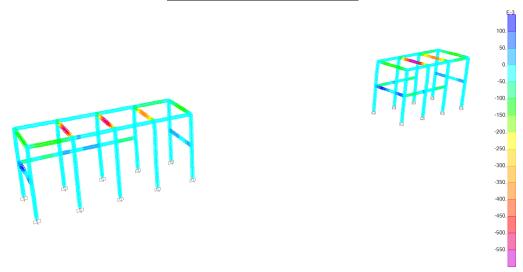
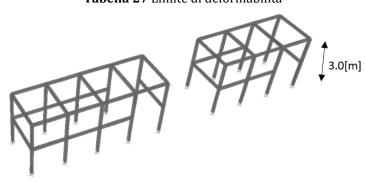


Figura 12 Deformazione verticale [mm]

$$\delta_{comb6} = 0.55[mm] < \delta_{max} = 11[mm]$$
 [ok, verificato]


10. Verifiche di deformazione orizzontale

In esercizio, combinazione di carico SLE, è possibile determinare il massimo spostamento orizzontale della copertura.

Per edifici monopiano, il limite imposto da Normativa è pari a H/300. Nel caso in oggetto il valore di 'H' viene assunto pari a 3[m].

	Limiti superiori per gli spostamenti orizzontali					
Tipologia dell'edificio	δ	Δ				
	h	\overline{H}				
Edifici industriali monopiano senza carro-	_1_	/				
ponte	150	/				
Altri edifici monopiano	<u>1</u> 300	/				

Tabella 27 Limite di deformabilità

 $\delta_{\text{max}} = 300 / 300 = 10[mm]$

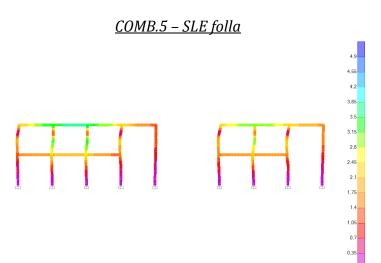
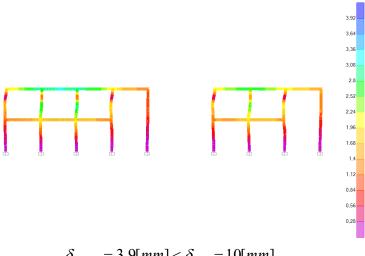



Figura 13 Deformazione verticale [mm]

$$\delta_{comb5} = 4.9[mm] < \delta_{max} = 10[mm]$$
[ok, verificato]

COMB.7 - SLE vento

11. Verifica delle connessioni

11.1 Connessione Pilastro-trave (tipo 1)

La connessione in oggetto si compone di tre travi che si collegano, sullo stesso nodo, alla testa del pilastro. Le due travi perimetrali si interrompono e si collegano alla trave posta trasversalmente ai box. Quest'ultima si collega poi con un'unione bullonata alla testa del pilastro. I bulloni sono tutti M12, classe 8.8.

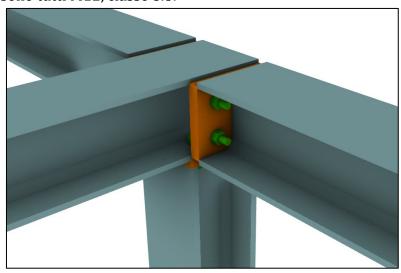


Figura 14 Vista 3d

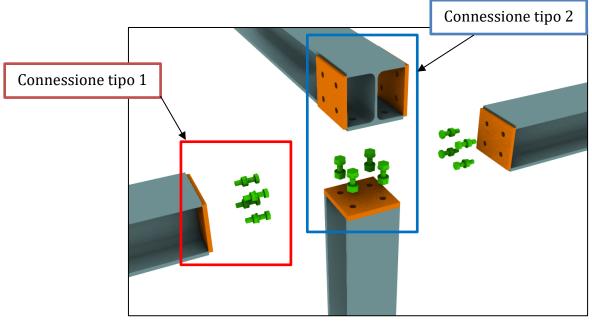


Figura 15 Exploded view

11.1.1 Connessione tipo 1

La Connessione in oggetto è sollecitata a trazione, taglio e flessione. Le massime sollecitazioni, determinate nelle combinazioni SLU ed SLV, si riportano nel seguito. A favore di sicurezza, le sollecitazioni si assumono concomitanti sulla stessa sezione.

Sollecitazione	Valore
Trazione	7.0 [kN]
Flessione Mx	2.0 [kNm]
Flessione My	1.20 [kNm]
Taglio Vy	1.20 [kN]
Taglio Vx	0.50 [kN]

Tabella 28 Sollecitazioni connessione tipo 1

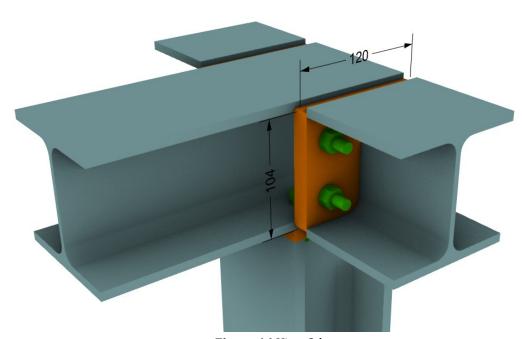
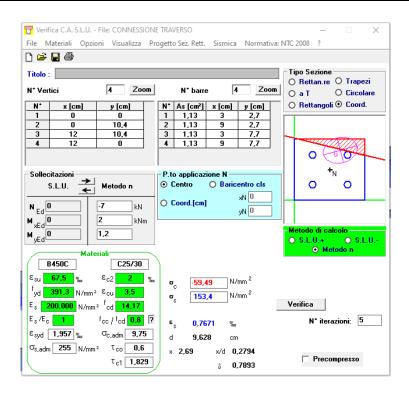


Figura 16 Vista 3d



PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI - STRUTTURE: RELAZIONE DI CALCOLO BOX

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
E21D	00 D Z3	RH	FA5200104	В	48 di 89

Verifica a trazione

$$\sigma_s = 153[MPa]$$

$$T = \sigma_s \cdot A_s =$$

$$= 153[MPa] \cdot 1.13[cm^2] = 17.2[kN]$$
[trazione massima]

$$F_{tRd} = 48[kN]$$

[trazione resistente - rif. Tabella 1]

$$T/F_{t,Rd} = 0.36 < 1.0$$

[ok, verificato]

Verifica a taglio

$$V = \sqrt{V_x^2 + V_y^2} / 4 = 0.32[kN]$$

[taglio su singola barra]

$$F_{vRd} = 32[kN]$$

[taglio resistente - rif. Tabella 1]

$$V/F_{v,Rd} = 0.01 < 1.0$$

[ok, verificato]

Verifica a taglio - trazione

$$\frac{V}{F_{v,Rd}} + \frac{T}{1.4 \cdot F_{t,Rd}} = 0.27 < 1$$

11.1.2 Connessione tipo 2

Tale connessione rappresenta il collegamento fra le travi trasversali ai box e la testa dei pilastri. La connessione è prevalentemente sollecitata a flessione, la cui verifica è riportata nel seguito.

Sollecitazione	Valore
Flessione Mx	3.80 [kNm]

Tabella 29 Sollecitazioni connessione tipo 2

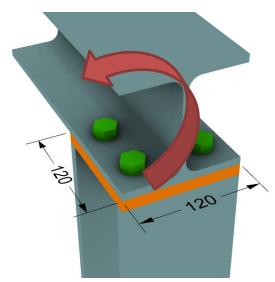
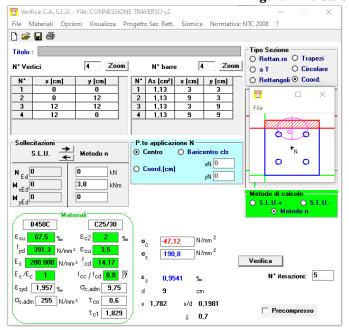



Figura 17 Vista 3d

Verifica a trazione

$$\sigma_{s} = 190[MPa]$$

$$T = \sigma_s \cdot A_s =$$

$$= 190[MPa] \cdot 1.13[cm^2] = 21.4[kN]$$
[trazione massima]

$$F_{t,Rd} = 48[kN]$$

[trazione resistente – rif. Tabella 1]

$$T/F_{t,Rd} = 0.45 < 1.0$$

11.2 Connessione Pilastro-traverso intermedio

I traversi, posti indicativamente a metà altezza dei pilastri, hanno funzione di controvento della struttura e di ritegno della spinta della folla.

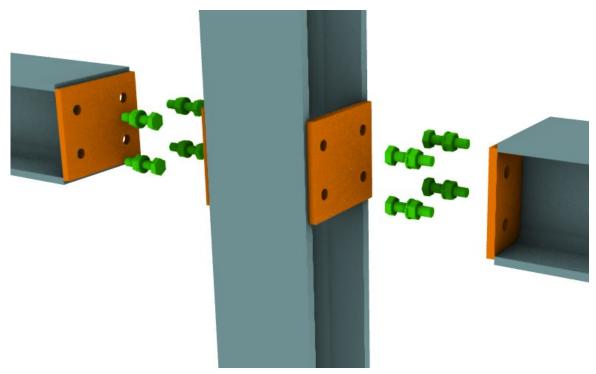


Figura 18 Vista 3d esplosa

La Connessione in oggetto è sollecitata a trazione, taglio e flessione. Le massime sollecitazioni, determinate nelle combinazioni SLU ed SLV, si riportano nel seguito. Al fine di non sovradimensionare la connessione, si riportano le verifiche per tre condizioni critiche: Forza di trazione massima; flessione Mx massima; flessione My massima.

Comb #	Trazione [kN]	Flessione My [kNm]	Flessione Mx [kNm]	Taglio Vy [kN]	Taglio Vx [kN]
1	6.9	2.45	2.45	2.7	3.0
2	4.2	2.50	0.48	3.2	0.4
3	4.1	1.3	3.5	3.0	5.9

Tabella 30 Sollecitazioni

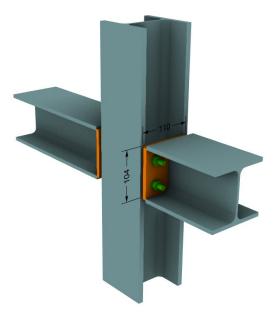
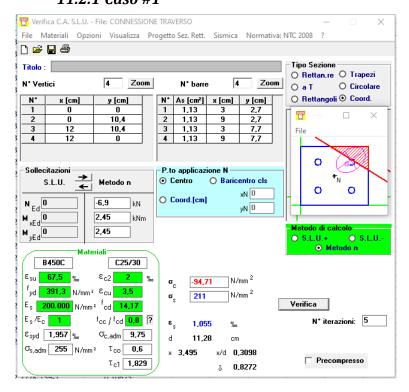



Figura 19 Vista 3d

11.2.1 Caso #1

Verifica a trazione

$$\sigma_s = 211[MPa]$$

$$T = \sigma_s \cdot A_s =$$
= 211[MPa]·1.13[cm²] = 23.8[kN]
[trazione massima]

$$F_{t,Rd} = 48[kN]$$

[trazione resistente - rif. Tabella 1]

$$T/F_{t,Rd} = 0.48 < 1.0$$

SCE4

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI - STRUTTURE: RELAZIONE DI CALCOLO BOX

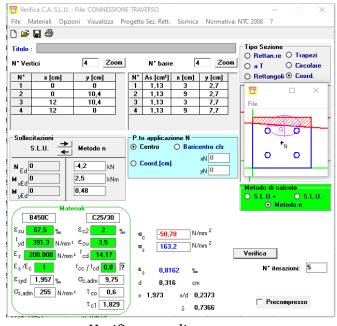
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 E21D
 00 D Z3
 RH
 FA5200104
 B
 52 di 89

Verifica a taglio

$$V = \sqrt{V_x^2 + V_y^2} / 4 = 1.1[kN]$$

[taglio su singola barra]


$$F_{v,Rd} = 32[kN]$$

[taglio resistente - rif. Tabella 1]

$$V/F_{vRd} = 0.04 < 1.0$$

[ok, verificato]

11.2.2 Caso #2

Verifica a taglio

$$V = \sqrt{V_x^2 + V_y^2} / 4 = 0.80[kN]$$

[taglio su singola barra]

$$F_{vRd} = 32[kN]$$

[taglio resistente - rif. Tabella 1]

$$V/F_{vRd} = 0.02 < 1.0$$

[ok, verificato]

Verifica a taglio - trazione

$$\frac{V}{F_{v,p,d}} + \frac{T}{1.4 \cdot F_{v,p,d}} = 0.38 < 1$$

[ok, verificato]

<u>Verifica a trazione</u>

$$\sigma_s = 163[MPa]$$

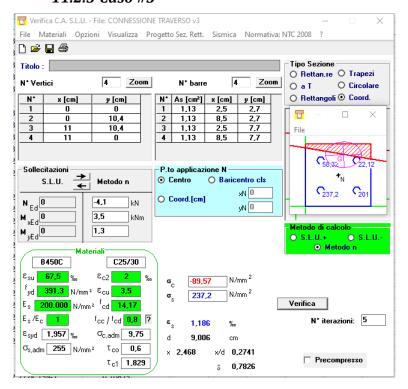
$$T = \sigma_s \cdot A_s =$$

$$= 163[MPa] \cdot 1.13[cm^2] = 18.4[kN]$$
[trazione massima]

$$F_{t,Rd} = 48[kN]$$

[trazione resistente - rif. Tabella 1]

$$T/F_{t,Rd} = 0.38 < 1.0$$


[ok, verificato]

Verifica a taglio - trazione

$$\frac{V}{F_{v,Rd}} + \frac{T}{1.4 \cdot F_{t,Rd}} = 0.30 < 1$$

11.2.3 Caso #3

Verifica a trazione

$$\sigma_s = 237[MPa]$$

$$T = \sigma_s \cdot A_s =$$
= 237[MPa]·1.13[cm²] = 27[kN]
[trazione massima]

$$F_{t,Rd} = 48[kN]$$

[trazione resistente – rif. Tabella 1]

$$T/F_{t,Rd} = 0.56 < 1.0$$

[ok, verificato]

Verifica a taglio

$$V = \sqrt{V_x^2 + V_y^2} / 4 = 1.65[kN]$$

[taglio su singola barra]

$$F_{v,Rd} = 32[kN]$$

[taglio resistente - rif. Tabella 1]

$$V/F_{vRd} = 0.05 < 1.0$$

[ok, verificato]

Verifica a taglio - trazione

$$\frac{V}{F_{v,Rd}} + \frac{T}{1.4 \cdot F_{t,Rd}} = 0.45 < 1$$

11.3 Verifica della connessione in fondazione

Ciascun pilastro si collega alla fondazione sottostante tramite una piastra saldata di spessore 15[mm] e 8 tirafondi realizzati da barre M16.

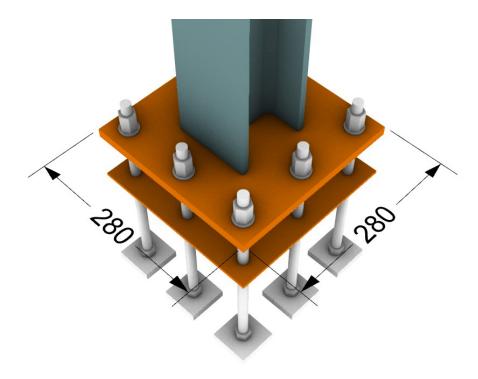


Figura 20 Vista 3d

La connessione è sollecitata da azioni di compressione/trazione, taglio e flessione. Nella seguente tabella si riportano i massimi valori determinabili dall'inviluppo delle combinazioni SLU ed SLV. Al fine di non sovradimensionare la connessione, si riportano le verifiche per tre condizioni critiche: Forza di trazione massima; flessione Mx massima; flessione My massima.

Caso #	Trazione	Flessione My	Flessione Mx	Taglio Vy	Taglio Vx
Caso n	[kN]	[kNm]	[kNm]	[kN]	[kN]
1	3.5	0.3	1.18	5.2	3.4
2	3.0	4.15	5.55	5.9	4.5
3	/	2.40	11.1	3.0	10.7

Tabella 31 Sollecitazioni

11.3.1 Verifica della carpenteria metallica

Tramite modelli di calcolo agli elementi finiti si analizzano le sollecitazioni massime sulle connessioni a terra.

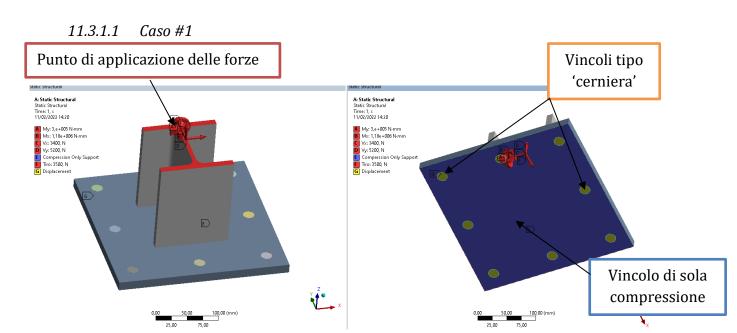
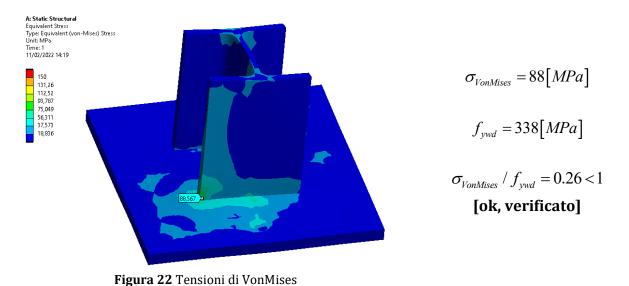



Figura 21 Modello di calcolo

11.3.1.2 Caso #2

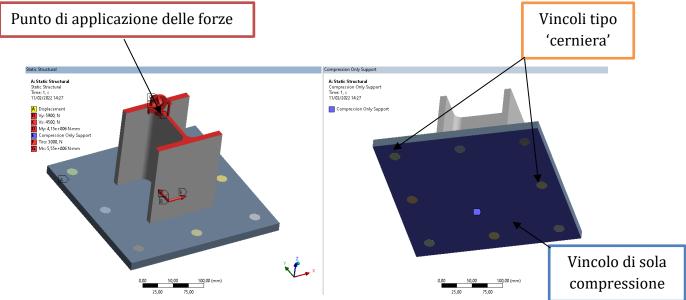


Figura 23 Modello di calcolo

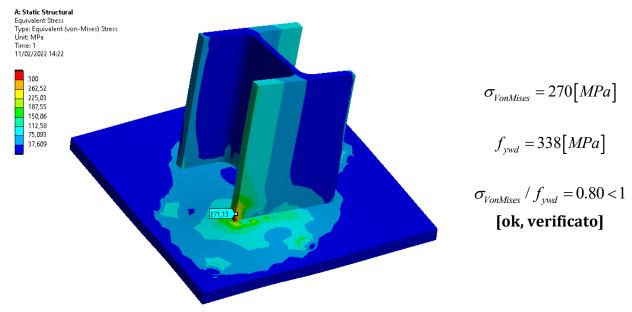


Figura 24 Tensioni di VonMises

11.3.1.3 Caso #3

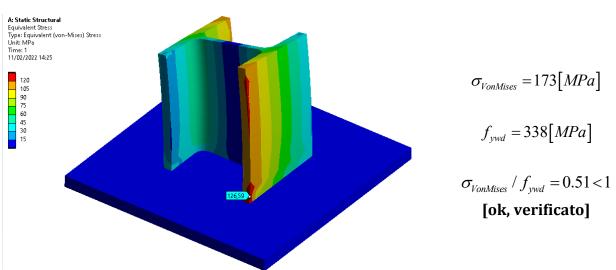


Figura 26 Tensioni di VonMises

PESISIFYALS Transferring and Technical Services ABCHIETTI ASSOCIATE ABCHIETTI ASSOCIATE				ISTEMA DEGLI A E FILOVIARIA E STI		
NOME DOCUMENTO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
AREA A SERVIZIO DEL CAPOLINEA NERVI - STRUTTURE:RELAZIONE DI CALCOLO BOX	E21D	00 D Z3	RH	FA5200104	В	58 di 89

11.3.2 Verifica dei tirafondi

I tirafondi sono realizzati da 8 barre filettate M16. La barra maggiormente sollecitata è caricata sia da azioni di trazione che di taglio. Anche qui, si analizzano separatamente i tre casi.

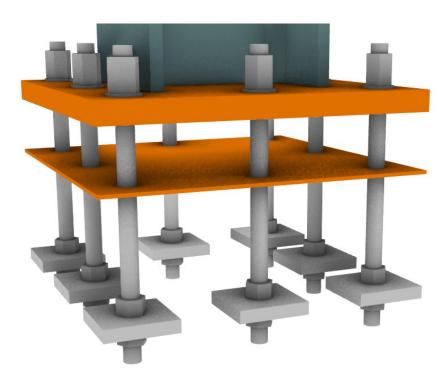
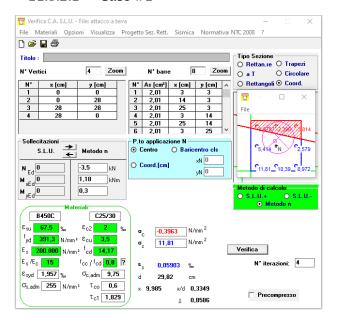


Figura 27 Vista 3d

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)


NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI - STRUTTURE: RELAZIONE DI CALCOLO BOX

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 E21D
 00 D Z3
 RH
 FA5200104
 B
 59 di 89

11.3.2.1 Caso #1

Verifica a trazione

$$\sigma_s = 11[MPa]$$

$$T = \sigma_s \cdot A_s =$$

$$= 11[MPa] \cdot 2.01[cm^2] = 2.2[kN]$$
[trazione massima]

$$F_{tRd} = 90[kN]$$

[trazione resistente – rif. Tabella 1]

$$T/F_{t,Rd} = 0.04 < 1.0$$

[ok, verificato]

Verifica a taglio

$$V = \frac{\sqrt{V_x^2 + V_y^2}}{8} = 0.8[kN]$$

[taglio su singola barra]

$$F_{vRd} = 50.2[kN]$$

[taglio resistente - rif. Tabella 1]

$$V/F_{vRd} = 0.01 < 1.0$$

[ok, verificato]

<u>Verifica a taglio - trazione</u>

$$\frac{V}{F_{v,Rd}} + \frac{T}{1.4 \cdot F_{t,Rd}} = 0.04 < 1$$

[ok, verificato]

Resistenza estrazione barra di ancoraggio

$$f_{bd} = f_{bk} / 1.5 = 2.69[MPa]$$

$$L = 340[mm]$$

$$P = 2 \cdot \pi \cdot r = 50[mm]$$

$$\tau = \frac{T}{P \cdot L} = \frac{2.2[kN]}{50[mm] \cdot 340[mm]} = 0.13[MPa]$$

$$\tau / f_{bd} = 0.12 < 1$$
[ok, verificato]

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

NOME DOCUMENTO

AREA A SERVIZIO DEL CAPOLINEA NERVI - STRUTTURE: RELAZIONE DI CALCOLO BOX

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 E21D
 00 D Z3
 RH
 FA5200104
 B
 60 di 89

11.3.2.2 Caso #2

Verifica a trazione

$$\sigma_{\rm s} = 60[MPa]$$

$$T = \sigma_s \cdot A_s =$$

$$= 60[MPa] \cdot 2.01[cm^2] = 12.6[kN]$$
[trazione massima]

$$F_{tRd} = 90[kN]$$

[trazione resistente - rif. Tabella 1]

$$T/F_{t,Rd} = 0.13 < 1.0$$

[ok, verificato]

Verifica a taglio

$$V = \frac{\sqrt{V_x^2 + V_y^2}}{8} = 1.0[kN]$$

[taglio su singola barra]

$$F_{vRd} = 50.2[kN]$$

[taglio resistente - rif. Tabella 1]

$$V/F_{vRd} = 0.02 < 1.0$$

[ok, verificato]

<u>Verifica a taglio - trazione</u>

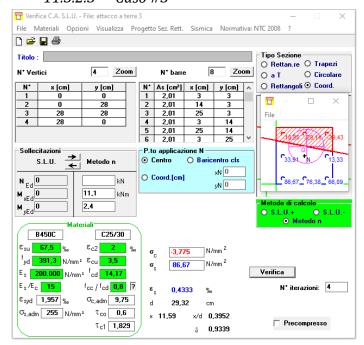
$$\frac{V}{F_{v,Rd}} + \frac{T}{1.4 \cdot F_{t,Rd}} = 0.11 < 1$$

[ok, verificato]

Resistenza estrazione barra di ancoraggio

$$f_{bd} = f_{bk} / 1.5 = 2.69[MPa]$$

$$L = 340[mm]$$


$$P = 2 \cdot \pi \cdot r = 50[mm]$$

$$\tau = \frac{T}{P \cdot L} = \frac{12.6[kN]}{50[mm] \cdot 340[mm]} = 0.74[MPa]$$

$$\tau / f_{bd} = 0.40 < 1$$
[ok, verificato]

11.3.2.3 Caso #3

Verifica a trazione

$$\sigma_s = 89[MPa]$$

$$T = \sigma_s \cdot A_s =$$

$$= 89[MPa] \cdot 2.01[cm^2] = 18[kN]$$
[trazione massima]

$$F_{t,Rd} = 90[kN]$$

[trazione resistente - rif. Tabella 1]

$$T/F_{t,Rd} = 0.20 < 1.0$$

[ok, verificato]

Verifica a taglio

$$V = \frac{\sqrt{V_x^2 + V_y^2}}{8} = 1.40[kN]$$

[taglio su singola barra]

$$F_{v,Rd} = 50.2[kN]$$

[taglio resistente - rif. Tabella 1]

$$V/F_{vRd} = 0.03 < 1.0$$

[ok, verificato]

Verifica a taglio - trazione

$$\frac{V}{F_{v,Rd}} + \frac{T}{1.4 \cdot F_{t,Rd}} = 0.17 < 1$$

[ok, verificato]

Resistenza estrazione barra di ancoraggio

$$f_{bd} = f_{bk} / 1.5 = 2.69[MPa]$$

$$L = 340[mm]$$

$$P = 2 \cdot \pi \cdot r = 50[mm]$$

$$\tau = \frac{T}{P \cdot L} = \frac{18[kN]}{50[mm] \cdot 340[mm]} = 1.05[MPa]$$

$$\tau / f_{bd} = 0.54 < 1$$
[ok, verificato]

12. Verifica delle fondazioni

Nella presente relazione di calcolo si riportano le verifiche inerenti alla sola struttura di fondazione intese come:

- Verifiche strutturali
- Verifiche geotecniche

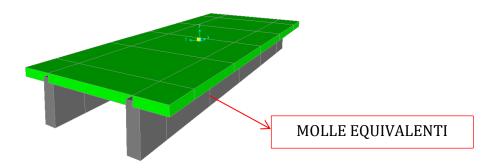
Le verifiche geotecniche sono svolte come previsto dalla NTC del 2018 al punto 6.4.3.1 seguendo la combinazione di calcolo:

A1+M1+R3

Si precisa come la relazione geologica a nostra disposizione non riporti delle indagini penetrometriche riferite al sito della costruzione. Pertanto nelle verifiche riportate nei seguenti punti si impiegano dei parametri geotecnici cautelativi i quali in fase esecutiva dovranno essere opportunamente verificati mediante prove geologiche in sito. Inoltre la fondazione oggetto di verifica è progettata considerando un andamento altimetrico del terreno pianeggiante. Nel caso in cui tale ipotesi non risulti essere verificata si deve necessariamente modificare la tipologia di fondazione inserendo pali e/o muri di sostegno.

12.1 CARATTERIZZAZIONE DEL TERRENO

Le caratteristiche meccaniche del terreno presente in sito sono le seguenti:


• Strato di Terreno argilloso spesso 15 m avente:

	-																				
N	Descrizione	Classe	Tipo	Classe 2	Potenza [m]	γ [kN/m³]	<u>β</u>	φ'cv [°]	Dr [%]	C	c' [kPa]	cu [kPa]	٧	NSPT	OCR	Δσ'p [kPa]	Eed [MPa]	CR	RR	CR/RR	FC [%]
1	omogeneo	limo	fine	argillosa	15	18	25	25	1	0.4	8	100	0.3	30	1		5			8	0

<u>Vista la presenza di un terreno principalmente a grana fine, si ritiene opportuno considerare</u> la posizione della falda alla quota del piano di posa della fondazione.

12.2 Modello di Calcolo della Fondazione con Winkler

La fondazione dell'opera è analizzata mediante apposito modello agli elementi finiti in cui i vincoli di incastro perfetto sono sostituiti da apposite molle dotate di opportuna rigidezza a simulare l'iterazione tra travi di fondazione ed il terreno. Si riporta nell'immagine sottostante la fondazione impiegata:

L'iterazione tra la struttura di fondazione e il terreno è stata condotta tramite il modello di Winkler. Il calcolo della rigidezza da assegnare alla molla è condotto calcolando prima il cedimento medio al di sotto del centro della fondazione. Noto il cedimento si calcola la rigidezza della molla con il rapporto tra il carico distribuito presente sulla platea ed il cedimento

$$K_{W} = \frac{\Delta q_{slu}}{W}$$

12.2.1 Calcolo della costante elastica di Winkler

Considerando la combinazione quasi permanente è presente in fondazione, in corrispondenza del baricentro delle masse della sovrastruttura, un carico concentrato pari ad:

TABLE: Base Reactions								
OutputCase	CaseType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY		
Text	Text	Tonf	Tonf	Tonf	Tonf-m	Tonf-m		
quasi permanente	Combination	1.129E-16	1.137E-17	46.1339	0.11142	0.0861		

$$Q_{quasi permanente} = 46 [ton]$$
 $M_{x,slu} = 0.11 [tonm]$
 $M_{y,slu} = 0.09 [tonm]$

Tale risultante dei carichi è desunta considerando sulla fondazione la presenza:

- Pensilina del capolinea
- Box sottostanti alla pensilina del capolinea

La fondazione è composta da travi spesse 60 cm e profonde circa 100 cm collegate in testa mediante soletta in calcestruzzo spessa 20 cm non appoggiata a terra. Il piano di posa della fondazione è posto a quota -1.40 m dal piano campagna. Il terreno su cui poggia la fondazione è composto principalmente da terreno coesivio. Il calcolo dei cedimenti avviene mediante il metodo Edometrico. Si riporta la stratigrafia ipotizzata per il sito di costruzione dell'opera:

Stratigrafie

N	Descrizione	falda [m]	Strati
1	Tipo A	0	1 strati: Htot =15

Strati stratigrafia Tipo A (1 strati: Htot =15)

	-			•																	
N	Descrizione	Classe	Tipo	Classe 2	Potenza [m]	Y [kN/m³]	φ' [°]	φ'cv [°]	Dr [%]	IC	c' [kPa]	cu [kPa]	V	NSPT	OCR	Δσ'p [kPa]	Eed [MPa]	CR	RR	CR/RR	FC [%]
1	omogeneo	limo	fine	argillosa	15	18	25	25	1	0.4	8	100	0.3	30	1		5			8	0


Si riporta il calco del cedimento:

Verifiche Cedimenti Edometrici

Piano .Wink.	Rettangolo	Fam	Cmb	q	qN	σ'ν0	WTot	k
	fondazione			[Pa]	[Pa]	[Pa]	[mm]	1
N/cm³]	IOIIdazione			[га]	[гај	[гај	[IIIIII]	
0	Trave 1							
sez.0	4	1	97134	87302	9832	6.4154	15.141	
0	Trave 1							
sez.1	4	1	97178	87346	9832	6.4181	15.141	
0	Trave 1							
sez.2	4	1	97222	87390	9832	6.4208	15.142	
0	Trave 2		00010				4= 044	
sez.0	4	1	86843	77011	9832	5.563	15.611	
0	Trave 2	4	00070	77447	0000	F F740	45.040	
sez.1 0	4 Trave 2	1	86979	77147	9832	5.5712	15.612	
sez.2	4	1	87162	77330	9832	5.5823	15.614	
0	Trave 3	ı	07 102	11330	9032	3.3023	13.014	
sez.0	4	1	98019	88187	9832	6.4698	15.15	
0	Trave 3	•	00010	00101	0002	0.1000	10.10	
sez.1	4	1	98005	88173	9832	6.469	15.15	
0	Trave 3							
sez.2	4	1	97991	88159	9832	6.4682	15.15	
0	Trave 4							
sez.0	4	1	87223	77391	9832	5.5862	15.614	
0	Trave 4						4-044	
sez.1	4	1	87377	77545	9832	5.5959	15.614	
0 sez.2	Trave 4 4	1	87577	77745	9832	5.6087	15.615	
Sez.z 0	Trave 5	ı	0/3//	77745	9032	5.0067	13.013	
sez.0	4	1	87640	77808	9832	5.6127	15.615	
0	Trave 5	•	07040	77000	0002	0.0127	10.010	
sez.1	4	1	87656	77824	9832	5.6137	15.615	
0	Trave 5							
sez.2	4	1	87672	77840	9832	5.6147	15.615	
0	Trave 6							
sez.0	4	1	86761	76929	9832	5.5581	15.61	
0	Trave 6			70010			4= 04	
sez.1	4	1	86775	76943	9832	5.559	15.61	
0	Trave 6	4	00700	70050	0000	F FF00	45.04	
sez.2 0	4 Trave 7	1	86788	76956	9832	5.5598	15.61	
sez.0	4	1	97400	87568	9832	6.4316	15.144	
0	Trave 7	1	31400	07 300	3032	0.4510	13.144	
sez.1	4	1	97848	88016	9832	6.4587	15.15	
0	Trave 7	•	2.2.0					

○ 43211477	ORUPO FERONITO DELLO STATO INALIANE Transporting and Technical Storvices ABOIRTH ASSOCIATION ARCHITETTA ASSOCIATION ARCHITECTURA AR					TEMA DEGLI A ILOVIARIA E ST		
NOME DOCUM		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	ZIO DEL CAPOLINEA NERVI - ELAZIONE DI CALCOLO BOX	E21D	00 D Z3	RH	FA5200104	В	66 di 89	
sez.2	4	1	98264	88432	9832	6.4837	15.156	
0	Trave 8							
sez.0	4	1	98301	88469	9832	6.5308	15.052	
0	Trave 8							
sez.1	4	1	98241	88409	9832	6.4828	15.154	
0 sez 2	Trave 8 4	4	98073	88241	9832	6 473	15 151	

Nella tabella precedente si riporta il carico agente su ciascuna trave, il relativo cedimento calcolato con anche il valore di rigidezza della molla. Tali valori di rigidezza sono assegnati alle travi di fondazione:

La costante di Winkler mediata tra tutte le travi è circa la seguente:

$$K_{W} = \frac{\Delta q_{slu}}{W} = 1.6 \left[\frac{kg}{cm^{3}} \right]$$

12.3 Confronto tra modello con fondazione rigida e flessibile

Al presente punto si riporta il confronto tra il modello con fondazione rigida (vincoli di incastro perfetto) con cui si sono valutate le sollecitazioni sulla struttura in elevazione ed il modello con fondazione flessibile (vincoli con molle) con cui si verifica la struttura di fondazione. Prima di procedere in questo modo la NTC del 2018 richiede al punto 7.2.6 punto b) che la risultante di taglio alla base e di sforzo normale calcolata con la fondazione flessibile deve essere almeno pari al 70% della risultante di taglio alla base e sforzo normale calcolati con modello di calcolo con fondazione rigida e spettro di riposta con suolo di tipo A. Si dimostra nel seguito il rispetto di tale disuguaglianza:

Fondazione rigida:

Nel caso in esame i valori di taglio alla base e sforzo normale calcolati allo SLV con modello con fondazione rigida sono i seguenti:

TABLE: Base Reactions									
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ				
Text	Text	Text	Tonf	Tonf	Tonf				
SISMA X	Combination	Max	0.4342	0.1232	46.1496				
SISMA X	Combination	Min	-0.4342	-0.1232	46.1183				
SISMA Y	Combination	Max	0.1313	0.4069	46.1819				
SISMA Y	Combination	Min	-0.1313	-0.4069	46.086				

Le risultanti:

$$\begin{split} T_{base,comb.SLV-X,rigida} &= \sqrt{F_X^2 + F_Y^2} = 0.45 \text{ [ton]} \\ T_{base,comb.SLV-Y,rigida} &= \sqrt{F_X^2 + F_Y^2} = 0.43 \text{ [ton]} \\ N_{comb.SLV,rigida} &= 46 \text{ [ton]} \end{split}$$

Nel caso in esame i valori di taglio alla base e sforzo normale calcolati allo SLV con modello con fondazione flessibile sono i seguenti:

TABLE: Base Reactions									
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ				
Text	Text	Text	Tonf	Tonf	Tonf				
SISMA X	Combination	Max	0.8289	0.2695	46.1621				
SISMA X	Combination	Min	-0.8289	-0.2695	46.1058				
SISMA Y	Combination	Max	0.2676	0.828	46.162				
SISMA Y	Combination	Min	-0.2676	-0.828	46.1059				

Le risultanti:

$$\begin{split} &T_{base,comb.SLV-X,flessibile} = \sqrt{F_X^2 + F_Y^2} = 0.87 \text{ [ton]} \\ &T_{base,comb.SLV-Y,flessibile} = \sqrt{F_X^2 + F_Y^2} = 0.87 \text{ [ton]} \end{split}$$

$$N_{comb.SLV,flessibile} = 46 [ton]$$

Il limite posto da NTC del 2018 posto pari al 70% delle risultanti di taglio alla base e sforzo normale è rispettato in quanto le sollecitazioni ottenute con la fondazione flessibile sono superiori a quelle ottenute con fondazione rigida e spettro di risposta con terreno di tipo A.

12.4 VERIFICHE DI RESISTENZA

Nel presente capitolo si riportano le verifiche strutturali e geotecniche richieste da NTC del 2018.

12.4.1 Verifiche di Resistenza Geotecnica (A1+M1+R3)

Le verifiche geotecniche consistono in:

- Verifica capacità portante della fondazione
- Verifica a scorrimento
- Verifica dei cedimenti (metodo edometrico).

12.4.1.1 Verifica di Portanza della fondazione

Il calcolo della portanza viene condotta a lungo termine in condizioni drenate per quanto riguarda la combinazione allo stato limite ultimo e nel breve termine in condizioni non drenate per la combinazione sismica allo stato limite di salvaguardia della vita. Le sollecitazioni massime ottenute sulla fondazione sono calcolate allo stato limite ultimo e di salvaguardia della vita.

- SLU
- SLV

12.4.1.1.1 Verifica di Portanza della fondazione allo SLU-CONDIZIONE DRENATE

La resistenza di progetto Rd, cioè in questo caso la tensione massima sopportabile dal terreno è calcolata:

$$R_{d} = \frac{q_{lim}}{FS}$$

Si procede al calcolo della portanza in condizioni drenate. La rottura di un terreno argilloso limoso viene determinata con il seguente cuneo di rottura:

Il qlim cioè la capacità portante del terreno dove poggia la fondazione è valutato mediante la formula di Brinch-Hansen:

$$q_{lim} = \frac{1}{2} \cdot \gamma' \cdot B \cdot N_{\gamma} \cdot \left(s_{\gamma} \cdot i_{\gamma} \cdot b_{\gamma} \right) + c' \cdot N_{c} \cdot \left(s_{c} \cdot d_{c} \cdot i_{c} \cdot b_{c} \right) + \sigma'_{v} \cdot N_{q} \cdot \left(s_{q} \cdot d_{q} \cdot i_{q} \cdot b_{q} \right)$$

Il terreno di posa della fondazione ha le seguenti caratteristiche meccaniche:

- Base della fondazione B = 0.30 m
- peso dell'unità di volume $\gamma = 20 \, kN/m^3$
- angolo di attrito interno $\varphi = 25^{\circ}$
- coesione efficace c'=0.08 t/mq

Il piano di posa della fondazione si trova ad una distanza dal piano campagna pari ad:

$$h = 1.4 \, m$$

inoltre esso non risulta essere inclinato quindi i fattori di forma b espressi in Brinch-Hansen vengono annullati:

$$b_c = b_q = 1$$

Anche il carico agente sulla fondazione non risulta essere, inclinato pertanto:

$$i_{\gamma} = i_c = i_q = 1$$

La fondazione ha i seguenti fattori di forma:

$$s_{\nu} = 1.07$$

$$s_{\gamma} = s_q = 1.1$$

$$s_C = 1 + 0.2 \cdot K_P \cdot \left(\frac{B}{L}\right) = 1.15$$

I fattori di approfondimento sono:

$$d_q = 1 + 2 \cdot \frac{d}{B} \cdot \tan(\varphi) \cdot (1 - \sin \varphi)^2 = 1.73$$

$$d_C = 1 + 0.2 \cdot \sqrt{K_P} \cdot \frac{D}{R} = 2.47$$

I coefficienti di capacità portante impiegati (Vesic) sono:

$$N_q = \frac{1 + \sin \varphi}{1 - \sin \varphi} \cdot e^{\pi \cdot \tan \varphi} = 10.65$$

$$N_{\gamma} = 2 \cdot (N_q + 1) \cdot \tan \varphi = 10.87$$

$$N_C = 20.70$$

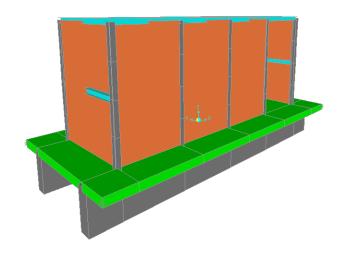
Di conseguenza la capacità portante della fondazione risulta essere la seguente:

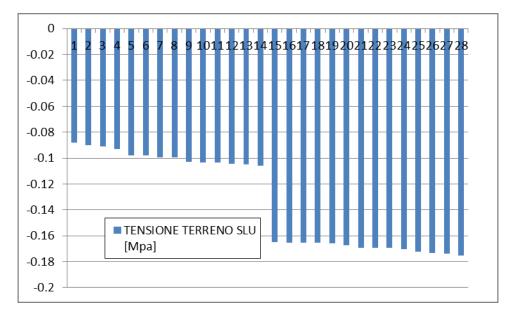
$$q_{lim} = \frac{1}{2} \cdot \gamma' \cdot B \cdot N_{\gamma} \cdot (s_{\gamma} \cdot i_{\gamma} \cdot b_{\gamma}) + c' \cdot N_{c} \cdot (s_{c} \cdot d_{c} \cdot i_{c} \cdot b_{c}) + \sigma'_{v} \cdot N_{q} \cdot (s_{q} \cdot d_{q} \cdot i_{q} \cdot b_{q}) =$$

$$q_{lim} = 0.62 \ [MPa]$$

Considerando un fattore di sicurezza pari ad:

Tabella $6.4.I$ – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali								
VERIFICA	COEFFICIENTE PARZIALE (R1)	COEFFICIENTE PARZIALE (R2)	COEFFICIENTE PARZIALE (R3)					
Capacità portante	$\gamma_R = 1.0$	$\gamma_R = 1.8$	$\gamma_R = 2.3$					
Scorrimento	$\gamma_R = 1.0$	$\gamma_R = 1,1$	$\gamma_R = 1,1$					


$$FS = 2.3$$


La capacità portante di progetto della fondazione è:

$$R_d = \frac{q_{lim}}{FS} = 0.27 [MPa]$$

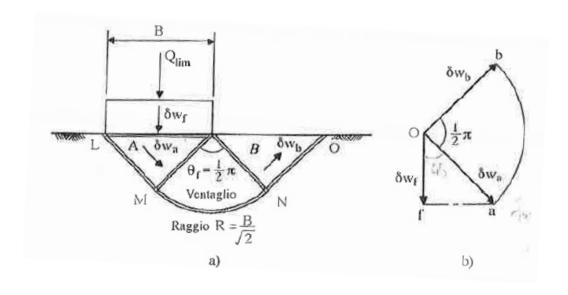
La tensione massima agente sul terreno con costante di Winkler pari a 1.60 kg/cm^3:

$$\sigma_{t} = 0.17 [MPa]$$

La verifica a capacità portante risulta quindi soddisfatta:

$$E_d = 0.17 \text{ [MPa]} \le R_d = 0.23 \text{[MPa]}$$

OK, Verificato!



12.4.1.1.2 Verifica di Portanza della fondazione allo SLV-CONDIZIONI NON DRENATE

La resistenza di progetto Rd, cioè in questo caso la tensione massima sopportabile dal terreno è calcolata:

$$R_{d} = \frac{q_{lim}}{FS}$$

Si procede al calcolo della portanza in condizioni non drenate. In questo caso le sovrapressioni interstiziali non sono dissipate ($\Delta u \neq 0$), pertanto la verifica viene condotta in termini di tensioni e parametri meccanici totali. La rottura di un terreno argilloso limoso viene determinata con il seguente cuneo di rottura:

Con tale meccanismo di rottura il carico limite della fondazione è il seguente:

$$q_{lim} = \frac{Q_{lim}}{B} = (2 + \pi) \cdot c_{ud} + \gamma_{sat} \cdot h$$

Con l'approccio numero uno si devono dividere le resistenze caratteristiche geotecniche per i coefficienti parziali dati da NTC del 2018 al punto 6.2.4.1.2:

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γм		
Tangente dell'angolo di resistenza al taglio	$\tan \phi'_k$	γ _{φ′}	1,0	1,25
Coesione efficace	c′ _k	γe'	1,0	1,25
Resistenza non drenata	c _{uk}	Yeu	1,0	1,4
Peso dell'unità di volume	γ	γγ	1,0	1,0

Quindi:

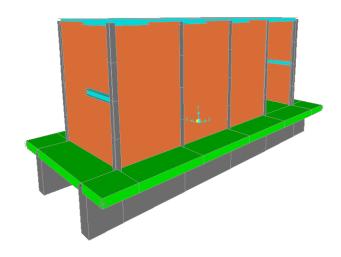
$$c_{ud} = \frac{0.10}{1} = 0.10 MPa$$

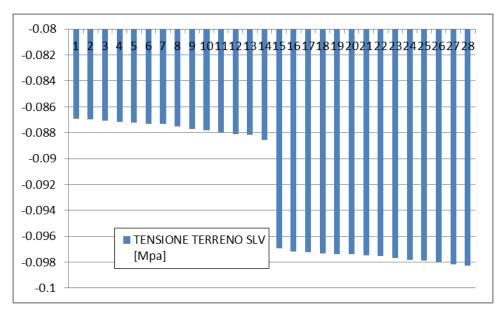
Il carico limite diviene:

$$q_{lim} = \frac{Q_{lim}}{B} = (2 + \pi) \cdot c_{ud} + \gamma_{sat} \cdot h = 0.514 + 0.0216 = 0.54 \, [MPa]$$

Tale valore deve essere ridotto per il fattore di sicurezza FS posto pari ad:

Tabella 6.4.I – Coefficienti parziali γ _R per le verifiche agli stati limite ultimi di fondazioni superficiali								
VERIFICA	COEFFICIENTE PARZIALE (R1)	COEFFICIENTE PARZIALE (R2)	COEFFICIENTE PARZIALE (R3)					
Capacità portante	$\gamma_{\rm R} = 1.0$	$\gamma_R = 1.8$	$\gamma_R = 2,3$					
Scorrimento	$\gamma_R = 1.0$	$\gamma_R = 1,1$	$\gamma_R = 1,1$					


$$FS = 2.3$$


La capacità portante di progetto della fondazione è:

$$R_d = \frac{q_{lim}}{FS} = 0.23 [MPa]$$

La tensione massima agente sul terreno con costante di Winkler pari a 1,60 kg/cm³:

$$\sigma_t = 0.1[MPa]$$

La verifica a capacità portante risulta quindi soddisfatta:

$$E_d = 0.1 \text{ [MPa]} \le R_d = 0.23 \text{ [MPa]}$$

12.4.1.1.3 Verifica a Scorrimento allo SLV

La resistenza di progetto Rd, cioè in questo caso la capacità a scorrimento è calcolata con la sottostante espressione:

$$R_{d} = \frac{A \cdot C_{u}}{\gamma_{R}}$$

In cui:

- A è l'area della fondazione
- C_u è la resistenza a taglio non drenata
- γ_R è il coefficiente di sicurezza pari a 1.1

Allo stato limite di salvaguardia della vita si ha in fondazione il seguente carico verticale e taglio alla base:

TABLE: Base Reactions										
OutputCase	CaseType	seType StepType		GlobalFY	GlobalFZ					
Text	Text	Text	Tonf	Tonf	Tonf					
SISMA X	Combination	Max	0.8289	0.2695	46.1621					
SISMA X	Combination	Min	-0.8289	-0.2695	46.1058					
SISMA Y	Combination	Max	0.2676	0.828	46.162					
SISMA Y	Combination	Min	-0.2676	-0.828	46.1059					

Le risultanti:

$$\begin{split} &T_{base,comb.SLV-X,flessibile} = \sqrt{F_X^2 + F_Y^2} = 0.87 \text{ [ton]} \\ &T_{base,comb.SLV-Y,flessibile} = \sqrt{F_X^2 + F_Y^2} = 0.87 \text{ [ton]} \end{split}$$

La capacità a scorrimento risulta essere:

$$R_d = \frac{A \cdot C_u}{\gamma_R} = \frac{(0.3 \cdot 8.15 \cdot 5) \cdot 2}{1.1} = 22 [ton]$$

La verifica a scorrimento è soddisfatta:

$$F_{h,SLV} = 0.87 \text{ [ton]} \le R_d = 22 \text{ [ton]}$$

12.4.1.2 Verifica dei cedimenti allo SLE

In questo punto si riporta il calcolo dei cedimenti allo stato limite di esercizio. Il limite di cedimento è assunto pari ad (*vedi autori Lancellotta, Viggiani*):

$$w_{lim} = 50 [mm]$$

Allo stato limite di esercizio sulla fondazione è presente un carico concentrato pari ad:

TABLE: Base Reactions									
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY		
Text	Text	Text	Tonf	Tonf	Tonf	Tonf-m	Tonf-m		
SLE-ENV	Combination	Max	5.5744	6.4	52.2759	9.33274	8.45424		

$$Q_{sle} = 52 [ton]$$

$$M_{x,sle} = 9.33 [tonm]$$

$$M_{y,sle} = 8.45 [tonm]$$

Verifiche Cedimenti Edometrici

Piano k.Wink.	Rettangolo	Fam	Cmb	q	qN	σ'v0	WTot	
N. / 31	fondazione			[Pa]	[Pa]	[Pa]	[mm]	[
N/cm ³] 0 sez.0 0 sez.1	Trave 4 Trave 4	1	108504 108994	98672 99162	9832 9832	7.3669 7.3965	14.729 14.736	1
0 sez.2 0 sez.0	Trave 4 Trave 4	1	109484 81340	99652 71508	9832 9832	7.4739 5.1639	14.649 15.752	2
0 sez.1 0 sez.2	Trave 4 Trave 4	1	85460 91079	75628 81247	9832 9832	5.5024 5.9353	15.531 15.345	2
0 sez.0 0 sez.1	Trave 4 Trave 4	1 1	134542 134915	124710 125083	9832 9832	9.4871 9.5095	14.182 14.187	3
0 sez.2 0 sez.0	Trave 4 Trave 4	1 1	135288 92923	125456 83091	9832 9832	9.5318 6.0929	14.193 15.251	3
0 sez.1 0 sez.2	Trave 4 Trave 4	1	97372 103056	87540 93224	9832 9832	6.4557 6.9412	15.083 14.847	4

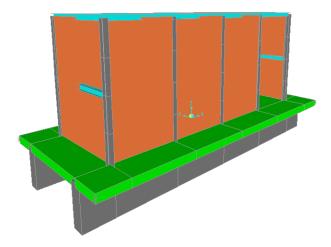
4308

PROGETTAZIONE DEFINITIVA DEL SISTEMA DEGLI ASSI DI FORZA PER IL TRASPORTO PUBBLICO LOCALE (RETE FILOVIARIA E STRUTTURE CONNESSE)

	S.p.A. ABCHITETTI ASSOCIATI							
NOME DOCU			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
AREA A SERV	VIZIO DEL CAPOLINEA NERVI -		E21D	00 D Z3	RH	FA5200104	В	78 di 89
STRUTTURE	:RELAZIONE DI CALCOLO BOX		2210	00 D 23	III.	1113200101	D	70 41 0 7
0	Trave							5
sez.0	4	1	104882	95050	9832	7.0994	14.773	
0	Trave							5
sez.1	4	1	105339	95507	9832	7.1274	14.779	
0	Trave							5
sez.2	4	1	105795	95963	9832	7.1553	14.786	
0	Trave							6
sez.0	4	1	78922	69090	9832	4.9329	15.999	
0	Trave		= 000 =	60400	0000	4.0504	4	6
sez.1	4	1	79325	69493	9832	4.9581	15.999	
0	Trave	4	50520	60007	0000	E 0224	45.052	6
sez.2	4	1	79729	69897	9832	5.0231	15.872	-
0	Trave	1	111440	101616	9832	7.5926	14670	7
sez.0 0	4 Trans	1	111448	101616	9832	7.5926	14.678	7
sez.1	Trave 4	1	116463	106631	9832	8.0414	14.483	/
0	Trave	1	110403	100031	9032	0.0414	14.403	7
sez.2	4	1	122773	112941	9832	8.5203	14.41	/
0	Trave	1	122//3	112,741	9032	0.5205	14.41	8
sez.0	4	1	124556	114723	9832	8.6781	14.353	O
0	Trave	1	124330	114723	7032	0.0701	14.555	8
sez.1	4	1	128409	118577	9832	8.9615	14.329	U
0	Trave 8	-	120107	1100//	7552	0.7010	11.527	
sez.2	4	1	133050	123218	9832	9.3448	14.238	

Si calcola un cedimento massimo allo stato limite di esercizio pari ad:

w = 10 [mm]


La verifica è soddisfatta:

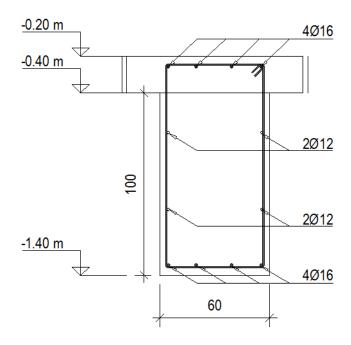
 $w = 10 \text{ [mm]} \le w_{\text{lim}} = 50 \text{ [mm]}$

12.4.2 Verifica della fondazione

L'opera in fondazione è composta da travi di fondazione in calcestruzzo gettato in opera collegate in testa grazie ad una soletta sempre in calcestruzzo armato non appoggiata a terra.

Le sollecitazioni presenti sulla platea sono influenzate dall'iterazione tra terreno e fondazione, pertanto le verifiche di resistenza riportate al presente punto sono condotte considerando le sollecitazioni calcolate mediante modello con fondazione rigida e flessibile.

12.4.2.1.1 Verifica Travi di fondazione

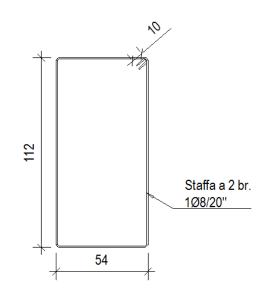

Al presente punto si riporta la verifica di resistenza delle travi di fondazione a flessione e taglio. Le sollecitazioni sono calcolate considerando la fondazione come rigida in modo da massimizzare le sollecitazioni sugli elementi resistenti presenti in fondazione.

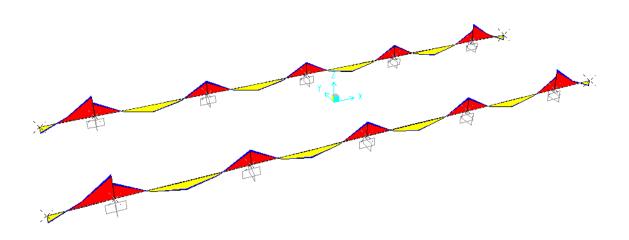
12.4.2.1.1.1 Verifica a flessione fondazione rigida

La verifica a flessione viene condotta con le sollecitazioni calcolate mediante la combinazione più gravosa, che in questo specifico caso è allo stato limite ultimo SLU. Le travi presentano la seguente geometria e armatura:

4 + 4\(\phi\)16 barre longitudinali

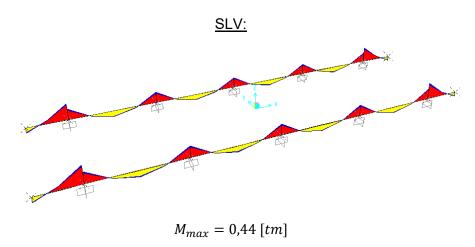
1Ø8/20 Staffe a 2 braccia



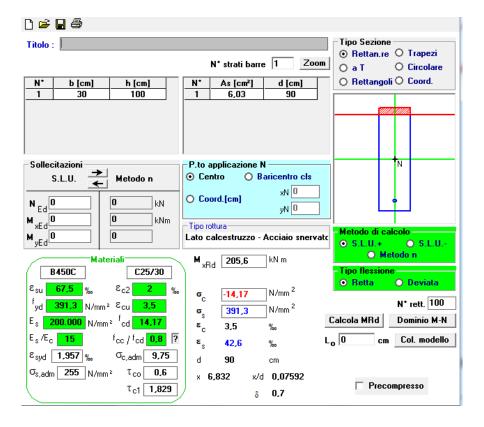

AREA A SERVIZIO DEL CAPOLINEA NERVI -

STRUTTURE:RELAZIONE DI CALCOLO BOX

CODIFICA COMMESSA LOTTO DOCUMENTO FOGLIO REV. E21D 00 D Z3 RH FA5200104 В 81 di 89



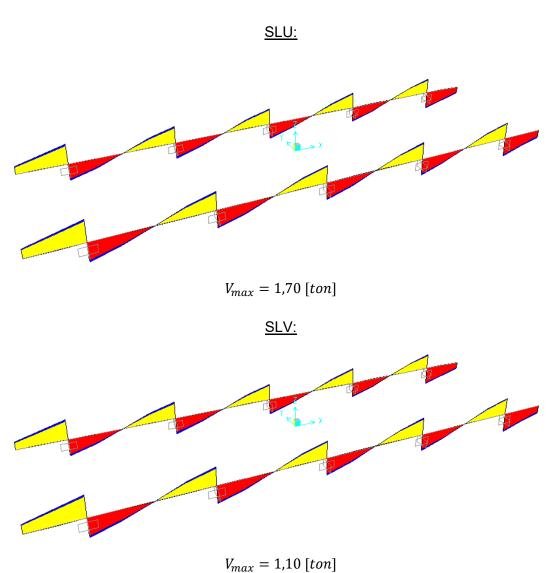
SLU:



 $M_{max}=0.7~[tm]$

Il momento resistente della trave è il seguente:

La verifica è soddisfatta:


$$M_{Ed} = 0.7 [tm] \le M_{Rd} = 20 [tm]$$

[OK, Verificato]

12.4.2.1.1.2 Verifica a taglio fondazione Rigida

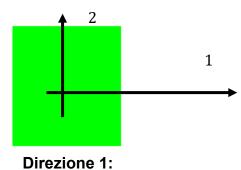
Al presente punto si verifica la trave di fondazione a taglio. Le sollecitazioni massime sono le seguenti:

La capacità a taglio della sezione è la seguente:

	VERIFICA A TAGLIO TRAVE IN C.A									
	TAGLIO DI PROGETTO Ved (kg)									
	LUNGHEZZA TRAVE (m)									
				CALCOLO P	asso staffe					
d	Asw	fyd	ctg(teta)	ctg(alfa)	sen(alfa)	Vrsd	S			
(mm)	(mm^2)	(Mpa)	(/)	(/)	(/)	(N)	(mm)			
1120	100.48	391	1	0.00	1	175000		22 6		
						198010		200		
				Area As (mm	^2)			804		
			Ved<	=As*fyd*sen(alfa) (N)			314364	VERIFICATO	
fcd	bw	ni	alfa_c							
(Mpa)	(mm)	(/)	(/)							
14.16667	600	0.5	1							
	•	F	OTTURA LAT	O ACCIAIO SE	E SOLO SE	VRcd>VRsd (N)	•	2142000	VERIFICATO
			Ve	ed<=0.5*bw*/	Asw*ni*fcd	(N)	·		2380000	VERIFICATO

Con una staffa da 8 mm ogni 20 cm si verifica una capacità a taglio pari ad:

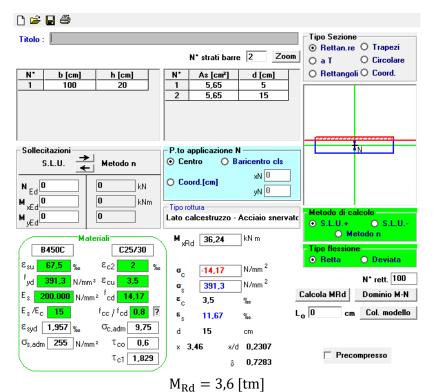
$$V_{Rd} = 19,80 [ton]$$


La verifica è soddisfatta:

$$V_{Ed} = 1,70 \ [ton] \le M_{Rd} = 19,80 \ [ton]$$

12.4.3 Verifica Soletta di fondazione

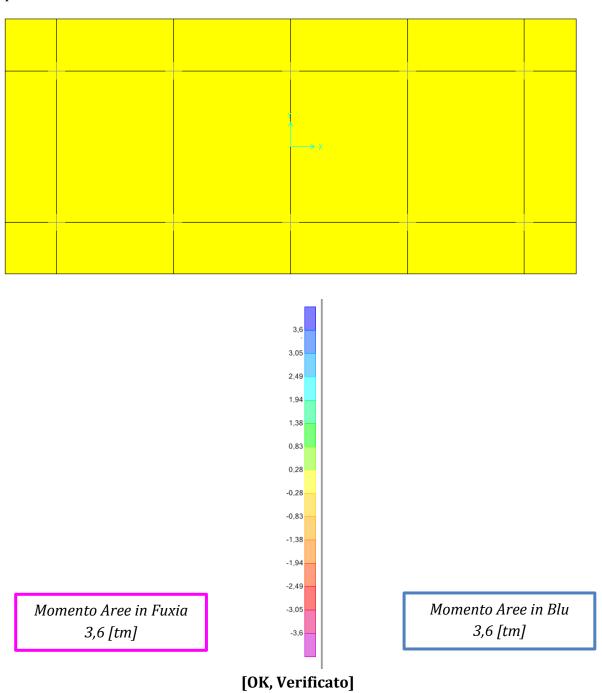
Al presente punto si riporta la verifica a flessione della soletta allo stato limite ultimo SLU. Per comprende la direzione delle sollecitazioni sulla platea si considera il seguente sistema di riferimento:



-

In direzione 1 con un'armatura diffusa composta da:

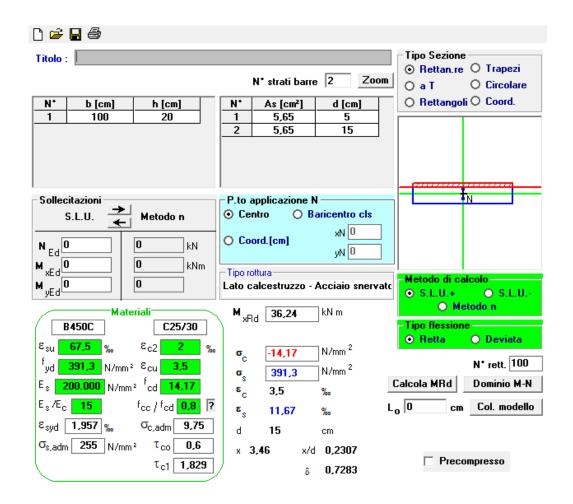
1Ø12/20 " (sopra) 1Ø12/20 " (sotto)


Il momento resistente di una striscia di platea larga un metro è pari ad:

Fondazione Rigida:

GRUPO FERROVI DELLO SIND ITALIANE THE DESCRIPTION OF THE PROPERTY OF THE PROP				ISTEMA DEGLI A E FILOVIARIA E STI		
NOME DOCUMENTO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
AREA A SERVIZIO DEL CAPOLINEA NERVI -	E21D	00 D Z3	RH	FA5200104	В	86 di 89
STRUTTURE:RELAZIONE DI CALCOLO BOX	EZID	00 D Z3	Kil	FA3200104	Б	00 ui 09

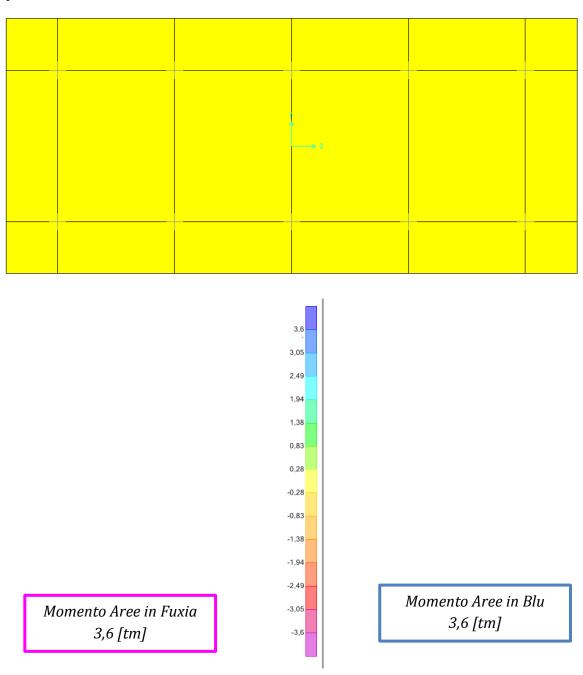
Con il momento resistente calcolato si ha il rispetto della verifica di resistenza nelle zone campite dal fuxia al blu



Direzione 2:

In direzione 2 con un'armatura diffusa composta da:

Il momento resistente di una striscia di platea larga un metro è pari ad:



 $M_{Rd} = 3.6 [tm]$

Fondazione Rigida:

Con il momento resistente calcolato si ha il rispetto della verifica di resistenza nelle zone campite dal fuxia al blu.

[OK, Verificato]

12.5 Analisi conclusive in merito alla verifica delle fondazioni

In seguito alle analisi svolte ed alle valutazione effettuate sui risultati ottenuti in termini di resistenza e di deformabilità è possibile affermare che l'organismo strutturale così progettato e tutti gli elementi che lo compongono rispettano i limiti e le prestazioni richieste da normativa.

Inoltre si dispone la seguente prescrizione:

La relazione geologica a nostra disposizione non riporta delle indagini penetrometriche riferite al sito della costruzione. Pertanto nelle verifiche riportate ai punti precedenti si impiegano dei parametri geotecnici cautelativi i quali in fase esecutiva dovranno essere opportunamente verificati mediante prove geologiche in sito. Inoltre la fondazione oggetto di verifica è progettata considerando un andamento altimetrico del terreno pianeggiante. Nel caso in cui tale ipotesi non risulti essere verificata si deve necessariamente modificare la tipologia di fondazione inserendo pali e/o muri di sostegno.

13. Allegato A

Il codice di calcolo utilizzato è "Sap 2000 – licenza n° SN:265B".