

COMUNE DI GENOVA

Servizio di Progettazione di Fattibilità Tecnica ed Economica e definitiva (per appalto integrato) nonché del coordinamento della sicurezza in fase di progettazione delle "Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

PROGETTO DEFINITIVO

RESPONSABILE UNICO DEL	PROCEDIMENTO: Arch.	Roberto Valcalda

PROGETTAZIONE:

(TY

4334444

MANDATARIA:

MANDANTE:

Dott.ssa Claudia Pizzinato

RESPONSABILE DELLE INTEGRAZIONI DELLE PRESTAZIONI SPECIALISTICHE: Ing. Simone Venturini

OPERE PROVVISONALI:

SCOLMATORE RIO MALTEMPO-OPERA DI PRESA Relazione di calcolo: Paratie contenimento scavo e strada

ELABORAZIONE	REVISIONI					
PROGETTUALE:	REV.	DATA	MOTIVO	REDATTO	VERIFICATO	APPROVATO
Ing. SIMONE VENTURINI	0	09/2022	Emissione	A.CACCIATORI	S.VENTURINI	S.VENTURINI
Ordine degli ingegneri Della Provincia di Verona						
N. A2515						

Rev. 0

Comune di Genova

09/2022

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Relazione di calcolo: Paratie contenimento scavo e strada

INDICE

		Pag
1.	Premessa	1
2.	Descrizione dell'opera	3
	2.1 Paratia opera di presa	
	2.2 Paratia lato strada	
3.	Normativa di riferimento	7
4.	Software di calcolo	
	4.1 Calcolo delle paratie	
	4.1.1 Origine e caratteristiche dei codici di calcolo	
	4.1.2 Ipotesi generali di calcolo	
	4.1.3 Affidabilità dei codici di calcolo	
	4.1.4 Giudizio motivato di accettabilità dei risultati	
	4.2 Analisi di stabilità globale	
	4.2.1 Origine e caratteristiche dei codici di calcolo	
	4.2.2 Ipotesi generali di calcolo	
	4.2.3 Affidabilità dei codici di calcolo	10
	4.2.4 Giudizio motivato di accettabilità dei risultati	10
	4.3 Altri software	10
5 .	Caratteristiche dei materiali	11
	5.1 Calcestruzzo	1′
	5.2 Acciaio	1
	5.3 Ulteriori specifiche relative ai materiali	13
	5.3.1 Calcestruzzo	13
6.	Condizioni idrogeologiche e geotecniche	16
	6.1 Stratigrafia di progetto	
	6.2 Livello di falda	17
7.	Valutazione sismica	
	7.1 Vita nominale, classe d'uso e periodo di riferimento	
	7.2 Pericolosità sismica	
	7.3 Categorie di sottosuolo e condizioni topografiche	
	7.4 Valutazione dell'azione pseudostatica	
	7.4.1 Azione pseudostatica per le paratie	
_	7.4.2 Azione pseudostatica per le verifiche di stabilità globale	
8.	Criteri di verifica e calcolo	
	8.1 Premesse	
	8.2 Combinazioni delle azioni	
	8.3 Coefficienti delle azioni agli stati limite	
	8.4 Criteri di verifica delle sezioni in C.A.	
	8.4.1 Verifiche a flessione e pressoflessione	
	8.4.2 Verifiche a taglio	
	8.6 Verifica agli Stati Limite delle paratie	
	8.6.1 SLU	
	8.6.2 SLV	
	8.6.3 SLE	
	8.7 Verifica dei tiranti di ancoraggio	
	8.8 Verifica di stabilità globale	
	8.8.1 SLU	
	8.8.2 SLV	
9.	Analisi dei carichi	
	9.1 Carichi permanenti	
	9.2 Carichi variabili	
	9.3 Azione sismica	34
10.	Paratia "opera di presa"	36

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022	Relazione di calcolo:	Paratie contenimento scavo e	strad
----------------	-----------------------	------------------------------	-------

	10.1 Descrizione dei modelli di calcolo	
	10.1.1 Geometria	36
	10.1.2 Fasi costruttive	37
	10.2 Risultati dell'analisi	42
	10.2.1 Micropali	42
	10.2.2 Sistemi di ancoraggio	46
	10.3 Verifiche strutturali	47
	10.3.1 Verifica del profilo in acciaio dei micropali	47
	10.3.2 Verifica del sistema di ancoraggio	48
	10.3.3 Verifica della lunghezza libera degli ancoraggi	52
	10.3.4 Verifica della gerarchia delle resistenze	53
	10.3.5 Verifica della trave di ripartizione	54
	10.4 Verifica degli spostamenti	56
11.	Paratia "lato strada"	57
	11.1 Descrizione dei modelli di calcolo	57
	11.1.1 Geometria	57
	11.1.2 Fasi costruttive	59
	11.2 Risultati dell'analisi	61
	11.3 Verifica del profilo in acciaio dei micropali	65
	11.4 Verifica del paramento	66
	11.4.1 Verifica a flessione	66
	11.4.2 Verifica a taglio	67
	11.4.3 Verifica a fessurazione	
12 .	Verifica di stabilità globale	
	12.1 Paratia "opera di presa"	
	12.2 Paratia "lato strada"	72
13 .	Allegato: Report dell'analisi paratieplus	74
	13.1 Paratia "opera di presa"	
	13.2 Paratia "lato strada"	101
14.	Allegato 2: Report delle verifiche di stabilità globale	114
	14.1 Paratia "lato strada"	114
	14.1.1 Caso statico	114
	14.1.2 Caso sismico	121

Committente: INDICE

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

INDICE DELLE FIGURE

Rev. 0

r en	ay.
Figura 1-1 – Rio Maltempo – In blu il bacino idrografico del torrente Maltempo; in verde quello del Rio Torbella. In	 1
Figura 1-2 – Opere principali. In rosso il tratto tombato del Rio Maltempo, in giallo la nuova galleria scolmatrice	2
Figura 2-1 – Planimetria delle opere di sostegno: in blu la paratia "opera di presa", in rosso la paratia "I strada"	<i>lato</i> 4
Figura 2-2 – Sezione 1 utilizzata per il dimensionamento della paratia "opera di presa"	4
Figura 2-3 – Sezione 2 utilizzata per il dimensionamento della paratia "opera di presa"	5
Figura 2-4: Sviluppata paratia "opera di presa"	
Figura 2-5 – Sezione utilizzata per il dimensionamento della paratia "lato strada"	
Figura 6-1 – Profilo geologico dell'opera	16
Figura 6-2 – Legenda dei materiali geotecnici	
Figura 6-3 – Caratterizzazione geotecnica di progetto	17
Figura 8-1 – Schema verifica a pressoflessione	27
Figura 8-2: Coefficienti parziali γ _R le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo condizioni statiche (tab.6.8.l delle ntc2018)	o in 32
Figura 10-1: Paratia "opera di presa" - Sezione di verifica	36
Figura 10-2: Paratia "opera di presa" - Sezione di progetto nel software di calcolo	37
Figura 10-3: Paratia "opera di presa" - SLU/SLV - Inviluppo dei momenti flettenti	43
Figura 10-4: Paratia "opera di presa" - SLU/SLV - Inviluppo dei tagli	43
Figura 10-5: Paratia "opera di presa" - SLE-rara/SLD - Inviluppo dei momenti flettenti	44
Figura 10-6: Paratia "opera di presa" - SLE-rara/SLD - Inviluppo degli spostamenti laterali	44
Figura 10-7: Paratia "opera di presa" - SLE-frequente - Inviluppo dei momenti flettenti	45
Figura 10-8: Paratia "opera di presa" - SLE-frequente - Inviluppo degli spostamenti laterali	45
Figura 10-9: Massimo sforzo laterale di un micropalo in roccia fratturata (Bustamante & Doix)	49
Figura 10-10: Paratia "opera di presa" - Verifica della lunghezza libera dei tiranti	53
Figura 10-11: Paratia "opera di presa" - Massime azioni sulla trave di ripartizione	54
Figura 10-12: Paratia "opera di presa" - Verifica a svergolamento della trave di ripartizione	55
Figura 10-13: Paratia "opera di presa" - Diagramma dell'inviluppo degli spostamenti nella combinazion SLE	
Figura 10-14: Paratia "opera di presa" - Schermata dell'inviluppo degli spostamenti nella combinazione SLE	
Figura 11-1: Paratia "lato strada" - Sezione di verifica	57
Figura 11-2: Paratia "lato strada" - Sezione di progetto nel software di calcolo	58
Figura 11-3: Paratia "lato strada" - SLU/SLV - Inviluppo dei momenti flettenti	62
Figura 11-4: Paratia "lato strada" - SLU/SLV - Inviluppo dei tagli	62
Figura 11-5: Paratia "lato strada" - SLE-rara/SLD - Inviluppo dei momenti flettenti	63
Figura 11-6: Paratia "lato strada" - SLE-rara/SLD - Inviluppo degli spostamenti laterali	63
Figura 11-7: Paratia "lato strada" - SLE-frequente - Inviluppo dei momenti flettenti	64
Figura 11-8: Paratia "lato strada" - SLE-frequente - Inviluppo degli spostamenti laterali	64
Figura 11-9 – Momento resistente del cordolo	66
Figura 11-10 – Calcolo delle tensioni in esercizio sul cordolo – SLE frequente	68

Comune di Genova "Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022	Relazione d	li calcolo: Paratie	contenimento	scavo e	e strada
----------------	-------------	---------------------	--------------	---------	----------

Figura 11-11 – Verifica a fessurazione del cordolo – SLE frequente	69
Figura 12-1: Geometria del modello per la valutazione della stabilità globale	70
Figura 12-2: Risultati del modello per la valutazione della stabilità globale	7
Figura 12-3: Geometria del modello per la valutazione della stabilità globale	72

Progettista:

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di cal

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 1

1. PREMESSA

Il Comune di Genova ha affidato a Technital il Progetto di Fattibilità Tecnico Economica delle opere di sistemazione idraulica e adeguamento della capacità idraulica del Rio Maltempo, affluente in sinistra idrografica del Torrente Polcevera, del quale è nota l'insufficienza della sezione a convogliare le portate aventi tempo di ritorno di 200 anni. Ciò è anche in parte dovuto all'estesa urbanizzazione che ha portato alla tombinatura del tratto terminale; tombinatura che risulta degradata, caratterizzata da dimensioni non costanti e ristretta per la presenza di numerosi sottoservizi.

La soluzione prospettata, in grado di risolvere le criticità idrauliche esistenti, prevede la realizzazione di una galleria scolmatrice che raccoglie le acque provenienti dalla parte più a monte e non antropizzata del bacino per collettarle nel tratto terminale del Rio Torbella.

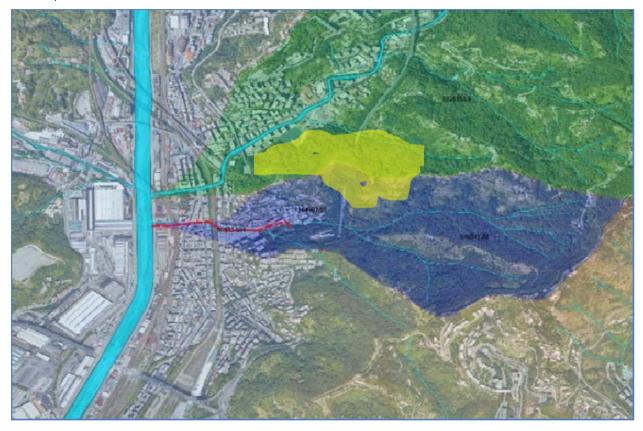


Figura 1-1 – Rio Maltempo – In blu il bacino idrografico del torrente Maltempo; in verde quello del Rio Torbella. In rosso il tratto tombato

Il progetto così concepito comprende la risoluzione delle principali interferenze riscontrate lungo il tratto terminale del Rio Maltempo con: la realizzazione di un'opera di presa a monte del viadotto autostradale ①, un pozzo di dissipazione del salto ②, una galleria scolmatrice del diametro di circa 4 m e lunghezza 543 m ③ dotata di pozzo di aerazione, l'opera di confluenza nel rio Torbella ④, la sistemazione idraulica del tratto terminale del rio Torbella fino alla confluenza nel Torrente Polcevera ed il rifacimento del ponte

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 2

stradale su Via Rossini (5).

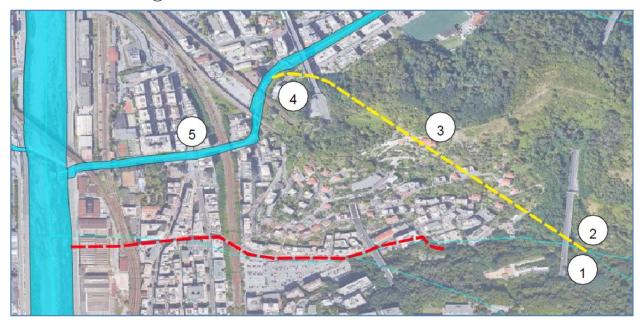


Figura 1-2 – Opere principali. In rosso il tratto tombato del Rio Maltempo, in giallo la nuova galleria scolmatrice

Committente: 2. DESC

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 3

2. DESCRIZIONE DELL'OPERA

Rev. 0

Nella presente relazione viene descritta l'analisi e la verifica delle opere di sostegno necessaria alla realizzazione dell'opera di presa. Le opere di sostegno consistono in due berlinesi di micropali: la prima, che sarà chiamata nel seguito "paratia opera di presa"; è realizzata per sostenere lo scavo in cui sarà realizzata l'opera di presa; la seconda, nominata "paratia lato strada", è necessaria per sostenere la strada di accesso al cantiere.

2.1 Paratia opera di presa

L'opera è realizzata mediante una berlinese di micropali tirantati. L'altezza di scavo è variabile lungo lo sviluppo dell'opera e raggiunge il massimo valore di 11,72 m. I micropali sono lunghi complessivamente 17 m e presentano un ordine di tiranti a circa 2,5 m dalla testa dei pali. L'opera di sostegno e il sistema di ancoraggio sono resi solidali mediante una trave di ripartizione costituita da 2 profili HEA220.

Nelle tabelle sottostanti sono mostrate le caratteristiche geometriche e meccaniche della paratia e degli ancoraggi:

Paratia

Diametro di perforazione [m]	0.25
Profilo tubolare	Ø168.3 mm sp. 10 mm
Lunghezza [m]	17.0
Interasse [m]	0.60

Tabella 2-1: Paratia "opera di presa" - Geometria dei micropali

Ancoraggi

Tipo	Tirante a 3 trefoli
Acciaio	Y1770
Diametro perforazione [mm]	150
Ordini	1
Posizione da testa trave di	Circa 2.5
coronamento [m da testa paratia]	
Lunghezza libera [m]	8.5
Bulbo d'ancoraggio [m]	9.0
Interasse [m]	2.4
Pretiro [kN]	200
Inclinazione	15°

Tabella 2-2: Paratia "opera di presa" - Geometria degli ancoraggi

Committente: Comune di Genova "Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente

Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 4

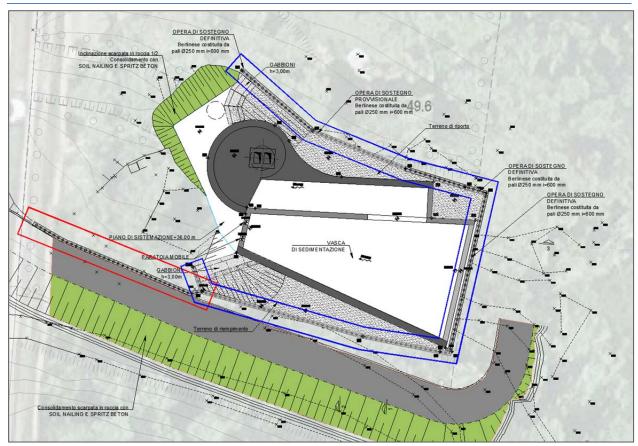


Figura 2-1 – Planimetria delle opere di sostegno: in blu la paratia "opera di presa", in rosso la paratia "lato strada"

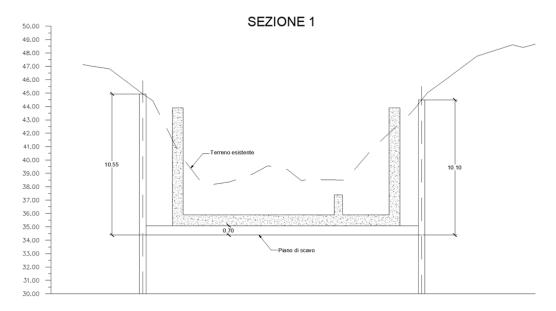
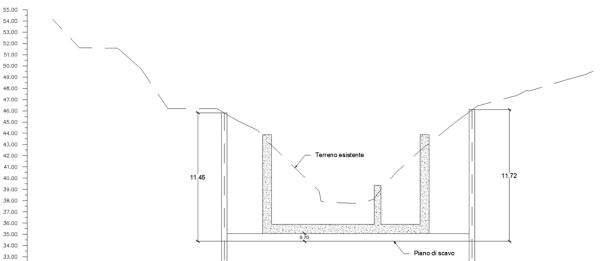


Figura 2-2 – Sezione 1 utilizzata per il dimensionamento della paratia "opera di presa"

32.00 31.00

Committente:

Comune di Genova


"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

ente di calcolo. I aratic contenimento scavo e site

SEZIONE 2

Figura 2-3 – Sezione 2 utilizzata per il dimensionamento della paratia "opera di presa"

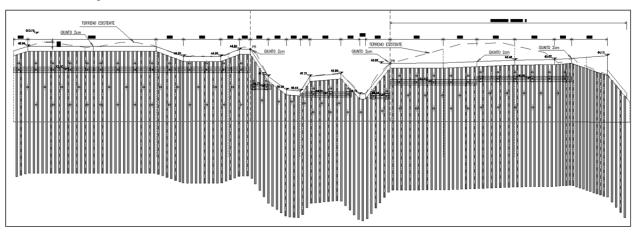


Figura 2-4: Sviluppata paratia "opera di presa"

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 6

2.2 Paratia lato strada

Rev. 0

La paratia si sviluppa per una lunghezza di 21,86 m ed è costituita da micropali collegati solidalmente ad un cordolo in c.a.. A tergo del cordolo si riempirà con materiale di riporto per portare la quota del terreno a quella di progetto della strada. La massima altezza del cordolo, e quindi del riempimento a monte, è di 2,70 m.

Nella tabella sottostante sono mostrate le caratteristiche geometriche e meccaniche della paratia:

Diametro di perforazione [m]	0.25
Profilo tubolare	Ø168.3 mm sp. 8 mm
Lunghezza micropalo [m]	6.0
Interasse [m]	0.60
Altezza paramento [m]	2.70
Larghezza paramento [m]	0.50

Tabella 2-3: Paratia "lato strada" - Geometria dei micropali

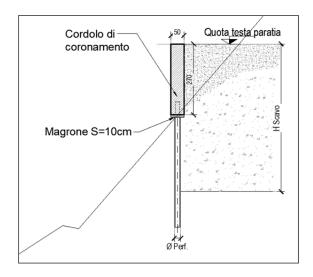


Figura 2-5 – Sezione utilizzata per il dimensionamento della paratia "lato strada"

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Rev. 0

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 7

3. NORMATIVA DI RIFERIMENTO

Si riporta nel seguito l'elenco delle leggi e dei decreti di carattere generale, assunti come riferimento.

- Legge 5-1-1971 n.1086 Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- Legge. 2 Febbraio 1974, n.64 Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- D.M. 17 Gennaio 2018 "Nuove Norme Tecniche per le Costruzioni (NTC)";
- Circolare 21 Gennaio 2019, n.7 Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.
- UNI EN 1992-1-1 Progettazione delle strutture di calcestruzzo;
- UNI EN 206-1-2016 Calcestruzzo: specificazione, prestazione, produzione e conformità;
- UNI EN 1997-1: 1994 Progettazione geotecnica;
- Regolamento UE N.1299/2014 della commissione del 18 Novembre 2014 e successivo Regolamento di esecuzione (UE) 2019/776 della commissione del 16 Maggio 2019.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera'

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 8

4. SOFTWARE DI CALCOLO

Rev. 0

4.1 Calcolo delle paratie

4.1.1 Origine e caratteristiche dei codici di calcolo

 Titolo **ParatiePlus**

 Versione 22.0

 Produttore Harpaceas

Ipotesi generali di calcolo

ParatiePlus è un codice alle differenze finite che simula il problema di uno scavo sostenuto da diaframmi flessibili e permette di valutare il comportamento della parete di sostegno durante tutte le fasi intermedie e nella configurazione finale.

La modellazione numerica dell'interazione terreno-struttura e del tipo a "trave su suolo elastico", in cui le pareti di sostegno vengono rappresentate con elementi finiti trave il cui comportamento è definito dalla rigidezza flessionale, mentre il terreno viene simulato attraverso elementi elasto-plastici monodimensionali (molle) connessi ai nodi delle paratie laddove c'è la presenza di terreno.

Per ogni approfondimento circa il software di calcolo, sui relativi algoritmi e sulle ipotesi di comportamento elasto-plastico del terreno si rimanda al manuale tecnico del software.

Le analisi sono state svolte considerando le seguenti ipotesi di tipo "generale".

- Stato piano nelle deformazioni (paratia di lunghezza infinita);
- Terreno modellato come un letto di molle con legame costitutivo elastoplastico incrudente con criterio di rottura di Mohr-Coulomb (terreni granulari in condizioni drenate);
- Struttura discretizzata in elementi perfettamente elastici;
- Tiranti modellati per mezzo di molle di opportuna rigidezza;
- Sovraccarichi a monte ed a valle della paratia trasformati in spinte sul paramento in accordo a quanto previsto dalla teoria elastica;
- Mobilitazione della spinta della terra funzione del livello di deformazione partendo da una condizione iniziale di spinta a riposo (K_0). I valori massimi e minimi della spinta vengono definiti in funzione dei coefficienti di spinta passiva (K_P) e attiva (K_A) rispettivamente.

4.1.3 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego.

La società produttrice ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

4.1.4 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali.

Inoltre, sulla base di considerazioni riquardanti gli stati tensionali e deformativi determinati, si è valutata la

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente
Polcevera"

Progetto Definitivo

Rev. 0

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 9

validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni. In base a quanto sopra, si asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.

4.2 Analisi di stabilità globale

4.2.1 Origine e caratteristiche dei codici di calcolo

• Titolo Geostudio

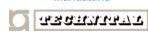
• Versione 8.15

Produttore GEO-SLOPE International, Ltd.

4.2.2 Ipotesi generali di calcolo

L'analisi di stabilità globale è effettuata attraverso il Slope/W, un modulo compreso all'interno del programma GeoStudio 2012.

Slope/W consente di valutare il fattore di sicurezza della stabilità di pendii bi-dimensionali attraverso il metodo dell'equilibrio limite. In generale, in questo metodo si valuta l'equilibrio di un volume di terreno che si muove rigidamente lungo una superficie di rottura. Tra i vari metodi appartenenti all'equilibrio, i cosiddetti "metodi dei conci" sono tra dei più conosciuti e versatili: essi consistono nel suddividere il volume di terreno in conci verticali. Ciascun concio è soggetto al peso proprio W_i, alla reazione normale N_i', a quella tangenziale T_i (definita solitamente secondo il criterio di Mohr-Coulomb in condizioni drenate e secondo quello di Tresca in condizioni non drenate) ed all'eventuale pressione dell'acqua U_i lungo la superficie di scorrimento ed alle azioni orizzontali H_i e verticali V_i agenti sulle facce laterali.


Il sistema è, eccetto casi particolari, iperstatico, e generalmente si impongono alcune ipotesi sulle azioni sulle facce laterali e sui punti di applicazione delle azioni al fine di ridurre le incognite. Tra i metodi dei conci, il metodo di Bishop è uno dei più utilizzati: le ipotesi sono:

- Il meccanismo di rottura è definito da un arco di circonferenza;
- Il punto di applicazione dell'azione normale N_i' coincide con il punto medio del concio;
- Le azioni verticali lungo le facce laterali dei conci Vi sono nulle

Imponendo l'equilibrio verticale di ciascun concio e l'equilibrio alla rotazione globale, si perviene alla formula del fattore di sicurezza (che si ricava iterativamente):

$$F_{S} = \frac{\sum \left(\frac{W_{i} - U_{i} \cos \alpha_{i} - \frac{c' \Delta x}{F_{S} \cos \alpha_{i}}}{\cos \alpha_{i} - \sin \alpha_{i} \left(\frac{\tan \varphi'}{F_{S}} \right)} \cdot \tan \varphi' + \frac{c' \Delta x}{\cos \alpha_{i}} \right)}{\sum W_{i} \sin \alpha_{i}}$$

Utilizzando questo metodo per una serie di ipotetiche superfici di rottura (definite da un centro di rotazione ed un raggio) si perviene a definire il meccanismo più probabile, corrispondente al fattore di sicurezza minore.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 10

Affidabilità dei codici di calcolo

Rev. 0

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego.

La società produttrice ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

Giudizio motivato di accettabilità dei risultati

09/2022

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali.

Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni. In base a quanto sopra, si asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.

4.3 Altri software

Per l'elaborazione dei dati di input/output e la creazione di tabelle riepilogative, si adottano procedure Microsoft® Office Excel opportunamente implementate in fogli elettronici Visual Basic for Application (VBA).

Per la verifica della trave di ripartizione è stato utilizzato il freeware Profili V6, messo a disposizione dal prof. Gelfi.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera" **Progetto Definitivo**

Rev. 0 09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 11

5. CARATTERISTICHE DEI MATERIALI

5.1 Calcestruzzo

Per garantire la durabilità delle strutture in calcestruzzo e per la definizione della classe di resistenza di queste ultime in funzione delle condizioni ambientali, si farà riferimento alle indicazioni contenute nelle norme UNI EN 206-1 ed UNI 11104. Dato il contatto con acque di prima pioggia, generalmente acide, si considerano i seguenti materiali:

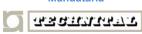
• Calcestruzzo per cordolo

Conforme alla norma UNI EN 206-1/UNI11104				
Classe di resistenza minima:	C_{\min}	C30/37		
Classe di esposizione:		XC4		
Classe di consistenza:	S	S4		
Copriferro minimo [mm]	С	40		

• Malta di iniezione per micropali

Conforme alla norma UNI EN 206-1/UNI11104						
Classe di resistenza minima:	C_{\min}	C30/37				
Classe di esposizione:		XC4				
Classe di consistenza:	S	S5				
Copriferro minimo [mm]	С	40				

• Malta di iniezione per tiranti


Conforme alla norma UNI EN 206-1/UNI11104						
Classe di resistenza minima:	C_{\min}	C25/30				
Classe di esposizione:		XC2				
Classe di consistenza:	S	S5				
Copriferro minimo [mm]	С	40				

5.2 Acciaio

• Acciaio per carpenteria metallica e profili dei micropali

Acciaio tipo S355H controllato in stabilimento					
Tensione caratteristica di snervamento	f_{yk}	$\geq 355N/mm^2$			
Tensione caratteristica di rottura	f_{tk}	$\geq 510N/mm^2$			

· Acciaio per trefoli di ancoraggio

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 12

Acciaio tipo Y1770 standard controllato in stabilimento					
Tensione caratteristica di snervamento	f_{yk}	$\geq 1560N/mm^2$			
Tensione caratteristica di rottura $f_{tk} \geq 1770 N/mm^2$					

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 13

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

5.3 Ulteriori specifiche relative ai materiali

5.3.1 Calcestruzzo

La prescrizione del calcestruzzo all'atto del progetto deve essere caratterizzata almeno mediante la classe di resistenza, la classe di consistenza al getto ed il diametro massimo dell'aggregato, nonché la classe di esposizione ambientale, di cui alla norma UNI EN 206:2016.

Per le caratteristiche dei calcestruzzi si fa riferimento alle formule indicate di seguito:

resistenza a compressione cubica: R_{ck}

resistenza a compressione cilindrica: f_{ck} = 0.83 · R_{ck}

resistenza a compressione cilindrica media: f_{cm} = f_{ck} + 8 [N/mm²]

• resistenza media a trazione semplice per classi <C50/60: $f_{ctm}=0.30 \cdot f_{ck}^{2/3}$

• modulo elastico: $E_{cm} = 22000 \cdot \left[\frac{f_{cm}}{10}\right]^{0.3}$ [N/mm2]

• coefficiente di Poisson: 0.20

La forte importanza che riveste la durabilità dell'opera in funzione dell'ambiente nel quale è inserita ha comportato una notevole attenzione alle tipologie dei materiali da utilizzarsi per le strutture da realizzare. Si consideri, infatti, che il manufatto deve garantire adeguati livelli di sicurezza anche dopo l'inevitabile degrado dei materiali dovuto al tempo ed all'azione degli agenti atmosferici.

Tutti questi elementi ambientali costituiscono dei fattori importantissimi dai quali non è possibile esulare quando si stabilisce la tipologia dei materiali che saranno impiegati per la realizzazione dell'opera, pensando questo nell'ottica di garantire alla stessa una vita media compatibile con l'investimento che si sta realizzando.

Ai fini di una corretta prescrizione del calcestruzzo, occorre classificare l'ambiente nel quale ciascun elemento strutturale sarà inserito. Per "ambiente", in questo contesto, si intende l'insieme delle azioni chimico-fisiche alle quali si presume che potrà essere esposto il calcestruzzo durante il periodo di vita delle opere e che causa effetti che non possono essere classificati come dovuti a carichi o ad azioni indirette quali deformazioni impresse, cedimenti e variazioni termiche.

In funzione di tali azioni, sono individuate le classi e sottoclassi di esposizione ambientale del calcestruzzo elencate nella tabella che segue.

Committente: Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 14

Classi di esposizione per calcestruzzo strutturale, in funzione delle condizioni ambientali secondo norma UNI 11104:2004 e UNI EN 206-1:2006

Classe esposizione norma UNI 11104 UNI EN 206 -1 Classe esposizione norma UNI 9858 Minima Classe di resistenza Descrizione dell'ambiente 1 Assenza di rischio di corrosione o attacco Interno di edifici con umidità relativa Per calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto dove c'è gelo/disgelo, o attacco chimico. Calcestruzzi con armatura o inserti metallici: in ambiente molto acciutto. molto bassa.
Calcestruzzo non armato all'interno di edifici. editic.

Calcestruzzo non armato immerso in suolo non aggressivo o in acqua non aggressiva.

Calcestruzzo non armato soggetto a cidi di bagnato asciutto ma non soggetto ad abrasione, gelo o attacco chimico. C 12/15 XΟ mbiente molto asciutto.

2 Corrosione indotta da carbonatazione

Nota - Le con condizioni rifle	dizioni di umidità si r ettano quelle dell'am	iferiscono a quelle presenti nel copi biente circostante.In questi casi la c estruzzo e il suo ambiente.	riferro o nel ricoprimento di inserti metallici, ma in r classificazione dell'ambiente circostante può esser	molti casi su e adeguata	può considerare .Questo può non	che tali essere il
2 a	XC1	Asciutto o permanentemente bagnato.	Interni di edifici con umidità relativa bassa. Calcestruzzo armato ordinario o precompresso con le superfici all'interno di strutture con eccezione delle parti esposte a condensa, o immerse i acqua.	0,60	C 25/30	
2 a	XC2	Bagnato, raramente asciutto.	Parti di strutture di contenimento liquidi, fondazioni. Calcestruzzo armato ordinario o precompresso prev alentemente immerso in acqua o terreno non aggressivo.	0,60	C 25/30	
5 a	хсз	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta.	0,55	C 28/35	
4 a 5 b	XC4	Ciclicamente asciutto e bagnato.	Calcestruzzo armato ordinario o precompresso in esterni con superfici soggette a alternanze di asciutto ed umido. Calcestruzzi a vista in ambienti urbani. Superfici a contatto con l'acqua non comprese nella classe XC2.	0,50	C 32/40	
3 Corrosi	one indotta d	la cloruri esclusi quelli	provenenti dall'acqua di mare			
5 a	XD1	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in superfici o parti di ponti e viadotti esposti a spruzzi d'acqua contenenti cloruri.	0,55	C 28/35	
4 a 5 b	XD2	Bagnato, raramente asciutto.	Calcestruzzo armato ordinario o precompresso in elementi strutturali totalmente immersi in acqua anche industriale contenete cloruri (Piscine).	0,50	C 32/40	
5 c	XD3	Ciclicamente bagnato e asciutto.	Calcestruzzo armato ordinario o precompresso, di elementi strutturali direttamente soggetti agli agenti disgelanti o agli spruzzi contenenti agenti disgelanti. Calcestruzzo armato ordinario o precompresso, elementi con una superficie immersa in acqua contenente cloruri e l'altra esposta all'aria. Parti di ponti, pavimentazioni e parcheggi per auto.	0,45	C 35/45	

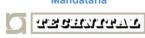
Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 15

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 -1	Descrizione dell'ambiente			Minima Classe di resistenza	Contenuto minimo in aria (%)
4 Corrosi	one indotta d	a cloruri presenti nell'a	acqua di mare			
4 a 5 b	XS1	Esposto alla salsedine marina ma non direttamente in contatto con l'acqua di mare.	Calcestruzzo armato ordinario o precompresso con elementi strutturali sulle coste o in prossimità.	0,50	C 32/40	
	XS2	Permanentemente sommerso.	Calcestruzzo armato ordinario o precompresso di strutture marine completamente immersi in acqua.	0,45	C 35/45	
	XS3	Zone esposte agli spruzzi o alle marea.	Calcestruzzo armato ordinario o precompresso con elementi strutturali esposti alla battigia o alle zone soggette agli spruzzi ed onde del mare.	0,45	C 35/45	
5 Attacco	dei cicli di g	elo/disgelo con o senza	disgelanti *			
2 b	XF1	Moderata saturazione d'acqua,in assenza di agente disgelante.	Superfici verticali di calcestruzzo come facciate e colonne esposte alla pioggia ed al gelo. Superfici non verticali e non soggette alla completa saturazione ma esposte all qelo, alla pioggia o all'acqua.	0,50	C 32/40	
3	XF2	Moderata saturazione d'acqua, in presenza di agente disgelante.	Elementi come parti di ponti che in altro modo sarebbero classificati come XF1 ma che sono esposti direttamente o indirettamente agli agenti disgelanti.	0,50	C 25/30	3,0
2 b	XF3	Elevata saturazione d'acqua, in assenza di agente disgelante	Superfici orizzontali in edifici dove l'acqua può accumularsi e che possono essere soggetti ai fenomeni di gelo, elementi soggetti a frequenti bagnature ed esposti al gelo.	0,50	C 25/30	3,0
3	XF4	Elevata saturazione d'acqua, con presenza di agente antigelo oppure acqua di mare.	Superfici orizzontali quali strade o pavimentazioni esposte al gelo ed ai sali disgelanti in modo diretto o indiretto, elementi esposti al gelo e soggetti a frequenti bagnature in presenza di agenti disgelanti o di acqua di mare.	0,45	C 28/35	3,0
6 Attacco	chimico**					
5 a	XA1	Ambiente chimicamente debolmente aggressivo secondo il prospetto 2 della UNI EN 206-1	Contenitori di fanghi e vasche di decantazione. Contenitori e vasche per acque reflue.	0,55	C 28/35	
4 a 5 b	XA2	Ambiente chimicamente moderatamente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di terreni aggressivi.	0,50	C 32/40	
5 c	ХАЗ	Ambiente chimicamente fortemente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di acque industriali fortemente aggressive. Contenitori di foraggi, mangimi e liquame provenienti dall'allevamento animale. Torri di raffreddamento di fumi di gas di scarico industriali.	0,45	C 35/45	


 ^{*)} Il grado di saturazione della seconda colonna riflette la relativa frequenza con cui si verifica il gelo in condizioni di saturazione:

 moderato: occasionalmente gelato in condizione di saturazione;
 elevato: alta frequenza di gelo in condizioni di saturazione.

Le resistenze caratteristiche $R_{\rm ck}$ della tabella precedente sono da considerarsi quelle minime in relazione agli usi indicati in funzione della classe di esposizione.

Le miscele non presenteranno un contenuto di cemento minore di 340 kg/m³. La definizione di una soglia minima per il dosaggio di cemento risponde all'esigenza di garantire in ogni caso una sufficiente quantità di pasta di cemento, condizione essenziale per ottenere un calcestruzzo indurito a struttura chiusa e poco permeabile. Nelle normali condizioni operative, il rispetto dei valori di R_{ck} e a/c della tabella precedente può comportare dosaggi di cemento anche sensibilmente più elevati del valore minimo indicato.

Nel caso in esame sarà necessario che il cemento sia resistente ai solfati.

^{**)} Da parte di acque del terreno e acque fluenti.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 16

6. CONDIZIONI IDROGEOLOGICHE E GEOTECNICHE

6.1 Stratigrafia di progetto

Rev. 0

Per la definizione della stratigrafia di progetto e delle caratteristiche dei materiali si è fatto riferimento al profilo geotecnico, alla relazione geotecnica e successive integrazioni a cui si rimanda.

Dal profilo si rileva che la vasca è inserita in una zona di argilliti, in particolare quelle più superficiali risultano particolarmente fratturate mentre quelle più profonde, presentano un livello di compattezza maggiore. Lo strato alterato ha spessore variabile, ma si può assumere come quota assoluta 38,5 mslm.

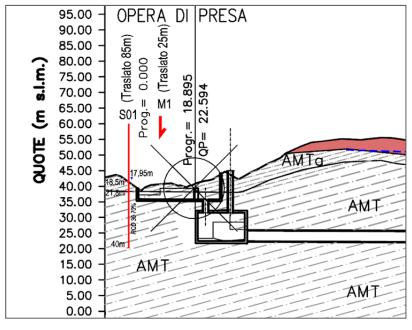


Figura 6-1 - Profilo geologico dell'opera

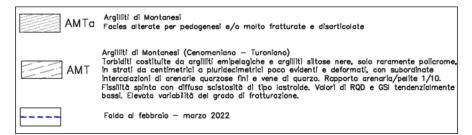


Figura 6-2 – Legenda dei materiali geotecnici

Di seguito si riportano i valori di riferimento per l'opera in esame.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Rev. 0 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 17

Sigla	Unità stratigrafica	γ (kN/m³)	GSI	RMR	Classe Bieniawsky	c' (kPa)	φ (°)	E (MPa)	K (m/s)
RIP	Riporto	18	-	-	-	0	28	20	1.0E-05
CD	Depositi eluviali-colluviali	19	-	-	-	5	29	25	1.0E-05
AA/AM	Alluvioni Torbella	19	-	-	-	0	31	28	1.0E-04
AMT	Argilliti di Montanesi	27	30	27	IV	100	38	1200	1.5E-07
AMTa	Argilliti di Montanesi, materiale alterato e zona di faglia	25	20	16	V	25	28	350	4.0E-07

Figura 6-3 – Caratterizzazione geotecnica di progetto

Di seguito si riporta la stratigrafia di progetto:

Unità	γ'	$\phi^{'}$	c'	Е	К
	$[kN/m^3]$	[°]	[kPa]	[MPa]	[m/s]
Argililti alterate	25	28	25	350	$4 \cdot 10^{-7}$
Argilliti intatte	27	38	100	1200	$1.5 \cdot 10^{-7}$

Tabella 6-1: Stratigrafia di progetto

Per la paratia lato strada, si assumono i seguenti parametri per il terreno di rinterro:

Unità	γ'	$\phi^{'}$	c'	Е
	$[kN/m^3]$	[°]	[kPa]	[MPa]
Rinterro	18	30	0	20

Tabella 6-2: Parametri geotecnici per il terreno di rinterro

6.2 Livello di falda

L'opera è realizzata in corrispondenza dell'alveo del rio. Dai dati a disposizione (vedasi la relazione geologico-geotecnica per dettagli) si evince che in prossimità dell'opera è stata rilevata la falda a 9,6 m di profondità dal piano campagna. A tale valore tuttavia sono da porre alcune considerazioni:

- Il sondaggio di riferimento si trova a monte dell'opera e l'orografia della zona è variabile;
- Il rio ha andamento fortemente variabile in funzione delle stagioni e delle precipitazioni.

Banca dati ambiente Liguria								
Sondaggio	Profondità Ubicazione Prove i		Prove in	Litologia	Falda			
Solidaggio	(m)	Obicazione	sito	Littologia	(m da p.c.)			
		Alta sponda destra Rio	0-5m Colluvioni. Da 5-					
10317 15		15 I '		alterati. Da 7 a 15 m argilloscisti fratturati	9,6			
		Maltempo		con intercalazioni arenacee				

Tabella 6-3: Livello di falda misurato in prossimità dell'opera (dato attinto dalla relazione geologica-geotecnica)

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera" **Progetto Definitivo**

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 18

In guisa di ciò, nell'analisi della paratia si procederà nel seguente modo:

- Paratia opera di presa:
 - Inizialmente si assume un livello di falda non interagente con l'opera;
 - A fine realizzazione, si assume cautelativamente una falda corrispondente ad un evento di pioggia corrispondente a 3 m al di sopra dell'intradosso della fondazione dell'opera definitiva, ovvero a 3,7 m di altezza dal fondo dello scavo.
- Paratia lato strada: si pone il livello di falda in corrispondenza dell'interfaccia tra rocce alterate ed integre.

Committente: 7. VALU

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 19

7. VALUTAZIONE SISMICA

Rev. 0

7.1 Vita nominale, classe d'uso e periodo di riferimento

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione. Essa costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente $S_e(T)$, con riferimento a prefissate probabilità di eccedenza P_{VR} , nel periodo di riferimento V_R . Ai fini della normativa vigente le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

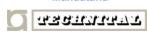
- ullet a_{g} accelerazione orizzontale massima al sito;
- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_C periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Ai fini delle verifiche strutturali, si considera lo Stato Limite di Salvaguardia della Vita (SLV). Per la valutazione degli spostamenti si considera lo Stato Limite di Danno (SLD).

Per la definizione delle azioni sismiche di progetto si sono adottati i seguenti parametri:

- Vita nominale $V_N = 50 \ anni$
- · Classe d'uso: IV
- Coefficiente d'uso $C_U = 2.0$
- Vita di riferimento per l'azione sismica $V_R = V_N \cdot C_U = 100 \ anni.$

La strategia di progettazione per i differenti stati limite di cui al punto 3.2.1 delle NTC 2018 è quindi ricavata dalla seguente formula (formula 3.2.0 delle NTC 2018), in funzione delle probabilità di superamento P_{VR} indicate in tabella 3.2.1 nel periodo di riferimento V_R (si veda anche la tabella seguente):


$$T_{R} = -\frac{V_{R}}{\ln(1 - P_{VR})}$$

Tab. 3.2.I – Probabilità di superamento P_{V_D} in funzione dello stato limite considerato

Stati Limite	P_{V_R} : Probabilità di superamento nel periodo di riferimento V_R					
Stati limite di esercizio	SLO	81%				
Stati limite di esercizio	SLD	63%				
Stati limita ultimi	SLV	10%				
Stati limite ultimi	SLC	5%				

7.2 Pericolosità sismica

Nelle norme tecniche NTC 2018 (Allegato B) sono forniti, secondo un reticolo di riferimento e per differenti intervalli di riferimento, i parametri sismici a_g , F_0 e T_C^* per un sito rigido orizzontale (come definiti al paragrafo 3.2 delle NTC 2018) necessari per la determinazione delle azioni sismiche.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera'

Progetto Definitivo

Rev. 0

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Qualora l'area in esame non ricada in corrispondenza dei nodi del reticolo di riferimento, i valori dei parametri di interesse possono essere calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento, mediante la seguente espressione:

$$p = \frac{\sum_{i=1}^4 \frac{p_i}{d_i}}{\sum_{i=1}^4 \frac{1}{d_i}}$$

in cui:

è il valore del parametro di interesse nel punto in esame;

è il valore del parametro di interesse nell'i-esimo punto della maglia elementare contenente il punto p_i in esame;

 d_i è la distanza del punto in esame dall'i-esimo punto della maglia suddetta.

Inoltre, qualora le tabelle di pericolosità sismica su reticolo di riferimento non contemplino il periodo di ritorno T_R corrispondente alla V_R e P_{VR} prefissati, il valore del generico parametro p (a_g, F_0, T_c^*) ad esso corrispondente potrà essere ricavato per interpolazione a partire dai dati relativi di TR previsti nella pericolosità sismica, utilizzando la seguente espressione, in allegato A alle NTC 2018:

$$\log(p) = \log(p_1) + \log\left(\frac{p_2}{p_1}\right) \cdot \log\left(\frac{T_R}{T_{R1}}\right) \cdot \left[\log\left(\frac{T_{R2}}{T_{R1}}\right)\right]^{-1}$$

in cui:

è il valore del parametro di interesse al T_R desiderato;

sono i periodi di ritorno più prossimi a T_R per i quali si dispone dei valori di p₁ e p₂ del generico T_{R1}, T_{R2} parametro p.

Di seguito si riportano i valori dei parametri sismici a_g, F₀, T_c* riferiti alle coordinate geografiche dell'opera oggetto di verifica.

	T _R (anni)	a _g [g]	F ₀	$T_{C}^{*}\left(s\right)$
SLD	101	0.039	2.558	0.245
SLV	949	0.087	2.533	0.296

7.3 Categorie di sottosuolo e condizioni topografiche

In accordo alle Norme Tecniche, le categorie di sottosuolo vengono distinte principalmente in funzione dei valori di V_S che caratterizzano il volume significativo del terreno con cui l'opera interagisce. La scelta deriva dal fatto che l'amplificazione sismica di un deposito è dipendente dal modulo di taglio a piccole deformazioni (G₀), a sua volta legato alla velocità di propagazione delle onde di taglio a piccole deformazioni mediante la ben nota relazione:

$$G_0 = \rho \cdot V_S^2$$

essendo ρ la densità del materiale che costituisce il deposito.

Per un dato sito, le Norme definiscono la velocità equivalente di propagazione delle onde di taglio (V_{S,eq}) mediante la formula:

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 21

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

essendo H lo spessore complessivo del deposito sopra al substrato, hi=spessore (in metri) dell'i-esimo strato compreso e $V_{S,i}$ =velocità delle onde di taglio nell'i-esimo strato.

Per i siti nei quali la profondità del substrato è maggiore di 30 m (condizione sempre riscontrata lungo il tracciato), si pone H = 30 m e nella formula si considereranno gli strati fino a 30 m. La velocità equivalente viene indicata come $V_{S,30}$.

In accordo alle NTC2018, l'effetto della risposta sismica locale sulla pericolosità di base si valuta mediante il coefficiente di sito (S), funzione sia della categoria di sottosuolo sopra determinata (S_S) sia dell'andamento plano altimetrico della superficie topografica (S_T):

$$S = S_S \cdot S_T$$
.

Il coefficiente S_S per ciascuna categoria di sottosuolo si ricava dalle espressioni fornite in Tabella 3.2.IV al par. 3.2.3 delle Norme Tecniche.

Tabella 7-1: Tab. 3.2.IV delle Norme Tecniche (espressioni di S_S e di C_C)

Categoria sottosuolo	S _s	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{\rm C}^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_{\rm c}^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	$1,25 \cdot (T_{\rm c}^*)^{-0,50}$
Е	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_{\rm c}^*)^{-0,40}$

Per quanto riguarda l'eventuale amplificazione topografica, al coefficiente S_T possono essere assegnati i valori seguenti in funzione della categoria topografica corrispondente.

Tabella 7-2: Tab. 3.2.III delle Norme Tecniche (categorie topografiche)

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
T3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con	1,4
	pendenza media maggiore di 30°	

Data la presenza di roccia, ci si pone in una condizione di classe B. Per quanto attiene infine al coefficiente di amplificazione topografica, ai sensi del punto 3.2.2 delle NTC 2018 si assume che le aree in esame siano sempre riferibili alla categoria T2, ovvero quali "superfici pianeggianti, pendii e rilievi isolati con inclinazione media i $\geq 15^{\circ}$ " con h/H=0.5. I coefficienti assunti per la valutazione della massima

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 22

accelerazione attesa in sito sono quindi i seguenti:

$$S_s = 1.2$$

$$S_T = 1.1$$

Di seguito si riportano i valori valutati in precedenza e la massima accelerazione attesa al piano campagna:

	T _R (anni)	$a_{g}[g]$	S	a _{max} [g]
SLD	35	0.039	1.32	0,051
SLV	332	0.087	1.32	0,115

Tabella 7-3: Azioni delle accelerazioni massime attese in sito

7.4 Valutazione dell'azione pseudostatica

Secondo quanto prescritto al Par. 7.11.6.2.3 delle NTC2018, l'analisi delle opere di sostegno in condizioni sismiche può essere eseguita mediante i metodi pseudo-statici e i metodi degli spostamenti.

Se la struttura può spostarsi, l'analisi pseudo-statica si esegue mediante i metodi dell'equilibrio limite.

7.4.1 Azione pseudostatica per le paratie

Seguendo l'approccio pseudo-statico, l'azione sismica è rappresentata tramite una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Le componenti orizzontale e verticale a_n e a_v dell'accelerazione equivalente devono essere ricavate in funzione delle proprietà del moto sismico atteso nel volume di terreno significativo per l'opera e della capacità dell'opera di subire spostamenti senza significative riduzioni di resistenza.

In mancanza di studi specifici, an può essere legata all'accelerazione di picco amax attesa nel volume di terreno significativo per l'opera mediante la relazione:

$$a_h = k_h \cdot g = \alpha \cdot \beta \cdot a_{max}$$

Dove:

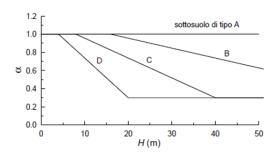
- k_h = coefficiente sismico orizzontale;
- α ≤ 1 = coefficiente riduttivo dipendente dalla deformabilità dei terreni interagenti con l'opera;
- $\beta \le 1$ = coefficiente riduttivo dipendente dalla capacità dell'opera di subire spostamenti senza significative cadute di resistenza;
- g = accelerazione di gravità

Tali coefficienti possono essere dedotti a partire dalle Figure 7.11.2 e 7.11.3 presenti nelle NTC2018 e di seguito riportate.

In ogni caso è necessario che $\rm u_{\rm s} \leq 0{,}005 \cdot \rm H$

Se $\alpha \cdot \beta < 0.2$ sarà da assumere $k_h = 0.2 \cdot \frac{a_{max}}{g}$

Comune di Genova


"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 23

0.8 0.6 0.4 0.2 0 0.1 0.2 0.3

Figura 7.11.2 – Diagramma per la valutazione del coefficiente di deformabilità lpha

Figura 7.11.3 – Diagramma per la valutazione del coefficiente di spostamento β.

Nel caso in esame, si pongono cautelativamente entrambi i fattori pari all'unità. Il fattore k_h di conseguenza assume i seguenti valori:

I valori dei coefficienti sismici k_h e k_v sono quindi definit di seguito:

• SLV: $k_h=0.115$

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 24

Azione pseudostatica per le verifiche di stabilità globale

Seguendo l'approccio pseudo-statico, l'azione sismica è rappresentata tramite una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico:

$$F_h = k_h \cdot W$$

$$F_v = k_v \cdot W$$

Dove i coefficienti k_h e k_v sono rispettivamente:

$$k_h = \beta_s \cdot \frac{a_{max}}{g}$$

$$k_v = \pm 0.5 \cdot k_h$$

 $\boldsymbol{\beta}_{s}$ è un coefficiente riduttivo dell'accelerazione massima, che tiene conto delle deformazioni attese dal sistema, e quindi dipende in generale dalla categoria di sottosuolo e dall'accelerazione attesa. A seconda che ci si riferisca alla stabilità di pendii oppure di fronti di scavo e rilevati, il valore di β_s assume i seguenti valorl:

Stabilità dei pendii (Par. 7.11.3.5.2 delle NTC2018):

Tab. 7.11.I - Coefficienti di riduzione dell'accelerazione massima attesa al sito

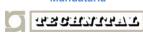

	Categoria di sottosuolo		
	A	B, C, D, E	
	βs	βs	
$0.2 < a_g(g) \le 0.4$	0,30	0,28	
$0.1 < a_g(g) \le 0.2$	0,27	0,24	
$a_g(g) \le 0.1$	0,20	0,20	

Tabella 7-4: Valori di β_s per pendii

I valori dei coefficienti sismici k_h e k_v sono quindi definiti di seguito:

- $k_h = 0.115 \cdot 0.20 = 0.023$
- $k_v = \pm 0.012$

Progettista:

Committente: 8. CRITE

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 25

8. CRITERI DI VERIFICA E CALCOLO

8.1 Premesse

Le verifiche contenute nel presente documento fanno riferimento a quanto prescritto nelle NTC 2018 e successiva circolare esplicativa e negli Eurocodici.

Le verifiche strutturali sono eseguite nei confronti degli Stati Limite Ultimi (SLU) e degli Stati Limite di Salvaguardia della Vita (SLV). Gli stati limite di esercizio esaminati per il soddisfacimento delle prestazioni richieste ai manufatti sono: danneggiamenti locali che possono ridurre la durabilità della struttura, la sua efficienza o il suo aspetto (controllo delle tensioni massime e della fessurazione del calcestruzzo con verifiche sezionali); eccessive deformazioni che possono limitare l'uso della costruzione, la sua efficienza e il suo aspetto (verifica dei rapporti limite deformazione massima o spessore/luce di calcolo).

Per ogni stato limite deve essere rispettata la condizione:

$$E_d \le R_d$$
 (eq. 6.2.1 delle NTC 2018)

dove

E_d valore di progetto dell'azione o dell'effetto dell'azione;

R_d valore di progetto della resistenza del sistema geotecnico.

8.2 Combinazioni delle azioni

Ai fini delle verifiche agli stati limite, la combinazione delle azioni è effettuata secondo quanto disposto dalle NTC 2018.

In particolare, si fa riferimento alle seguenti combinazioni:

• Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1}\cdot G_1 + \gamma_{G2}\cdot G_2 + \gamma_P\cdot P + \gamma_{Q1}\cdot Q_{k1} + \sum_{i>1}\gamma_{Qi}\cdot \psi_{0i}\cdot Q_{ki}$$

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili:

$$G_1 + G_2 + P + Q_{k1} + \sum_{i>1} \psi_{0i} \cdot Q_{ki}$$

• Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11}Q_{k1} + \sum_{i>1} \psi_{2i} \cdot Q_{ki}$$

• Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \sum_{i \ge 1} \psi_{2i} \cdot Q_{ki}$$

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica:

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 26

$$E+G_1+G_2+P+\sum_{i\geq 1}\psi_{2i}\cdot Q_{ki}$$

Per la determinazione degli effetti complessivamente indotti dal sisma, si è proceduto ad una combinazione direzionale considerando le necessarie permutazioni del segno:

$$\pm 1{,}00~{\rm E}_1 \pm 0{,}30~{\rm E}_2 \pm 0{,}30~{\rm E}_3$$

8.3 Coefficienti delle azioni agli stati limite

Per la definizione dei coefficienti di combinazione si fa riferimento alla tab. 2.5.I riportate nelle NTC 2018.

Tab. 2.5.I – Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψ _{0j}	ψ_{1j}	ψ_{2j}	
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3	
Categoria B - Uffici	0,7	0,5	0,3	
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6	
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6	
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8	
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso $\leq 30~\mathrm{kN}$)	0,7	0,7	0,6	
Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso > 30 kN)		0,5	0,3	
Categoria H - Coperture accessibili per sola manutenzione		0,0	0,0	
Categoria I – Coperture praticabili		da valutarsi caso per		
Categoria K – Coperture per usi speciali (impianti, eliporti,)	caso			
Vento	0,6	0,2	0,0	
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0	
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2	
Variazioni termiche	0,6	0,5	0,0	

Mentre la definizione dei coefficienti parziali d sicurezza si fa riferimento alla tab. 2.6.I delle NTC 2018:

Tab. 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\scriptscriptstyle F}$			
Carichi permanenti Gı	Favorevoli	2/	0,9	1,0	1,0
	Sfavorevoli	γ _{G1}	1,1	1,3	1,0
Conichi monno onti mon atmetternali Co(1)	Favorevoli	2/	0,8	0,8	0,8
Carichi permanenti non strutturali G ₂ ⁽¹⁾	Sfavorevoli	γ_{G2}	1,5	1,5	1,3
A-1	Favorevoli	2/	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	γ_{Qi}	1,5	1,5	1,3

⁽¹⁾Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/202

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 27

8.4 Criteri di verifica delle sezioni in C.A.

8.4.1 Verifiche a flessione e pressoflessione

La verifica alla sollecitazione che provocano tensioni normali (sforzo normale, flessione semplice e flessione composta) è stata fatta con uno specifico programma in cui, inserendo le caratteristiche geometriche della sezione, delle armature e delle sollecitazioni desunte dai precitati tabulati di calcolo, si ottiene, per i materiali ipotizzati, il momento resistente che dovrà risultare maggiore del momento agente.

Con riferimento alla sezione pressoinflessa retta, la capacità, in termini di resistenza e duttilità, si determina in base alle ipotesi di calcolo e ai modelli $\sigma - \varepsilon$:

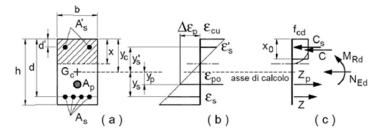


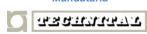
Figura 8-1 - Schema verifica a pressoflessione

Le verifiche a pressoflessione vengono condotte confrontando le resistenze ultime e le sollecitazioni massime agenti, valutando il corrispondente fattore di sicurezza (FS) come rapporto tra la sollecitazione resistente e quella massima agente.

$$FS = \frac{M_{Rd}}{M_{Ed}} \ge 1$$

Le verifiche flessionali agli SLU sono eseguite adottando le seguenti ipotesi:

- Conservazione delle sezioni piane;
- Perfetta aderenza tra acciaio e calcestruzzo;
- Resistenza a trazione del calcestruzzo nulla;
- Rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- Rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima.


8.4.2 Verifiche a taglio

Per la verifica di resistenza agli SLU, con riferimento alle sollecitazioni taglianti, deve risultare:

$$FS = \frac{V_{Rd}}{V_{Ed}} \ge 1$$

Si fa riferiemnto ai seguenti valori della resistenza di calcolo:

- $\bullet \ \ V_{Rd,c} = max \Big\{ \Big[\frac{0.18}{\gamma_c} \cdot k \cdot (100 \cdot \rho_I \cdot f_{ck})^{\frac{1}{3}} + k_1 \cdot \sigma_{cp} \Big] \cdot b_w \cdot d; \Big(\nu_{min} + 0.15 \cdot \sigma_{cp} \Big) \cdot b_w \cdot d \Big\}, \quad \text{resistenza} \quad \text{discolo dell'elemento privo di armatura a taglio;}$
- $V_{Rd,s} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot \left(ctg(\alpha) + ctg(\theta) \right) \cdot \sin \alpha$, valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento;
- $V_{Rd,max} = 0.9 \cdot d \cdot b_w \cdot f_{cd}' \cdot \frac{\text{ctg}(\alpha) + \text{ctg}(\theta)}{1 + \text{ctg}^2(\theta)}$, valore di progetto del massimo di sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente
Polcevera"

Progetto Definitivo

Rev. 0 09

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 28

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

- $k = 1 + \sqrt{\frac{200}{d}} \le 2.0$, con d espresso in mm;
- $\rho_l = \frac{A_{Sl}}{b_{w.d}} \le 0.02$ è il rapporto geometrico di armatura longitudinale;
- A_{Sl} è l'area dell'armatura tesa;
- b_w è la larghezza minima della sezione in zona tesa;
- $\sigma_{cp} = \frac{N_{Ed}}{A_c} < 0.2 \cdot f_{cd}$ è la tensione media di compressione della sezione;
- A_c è l'area della sezione in calcestruzzo;
- $\bullet \ \nu_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2};$
- A_{sw} è l'area della sezione trasversale dell'armatura a taglio;
- s è il passo delle staffe;
- f_{yd} è la tensione di snervamento di progetto dell'armatura a taglio
- α è l'inclinazione dell'armatura resistente a taglio rispetto all'asse dell'elemento;
- θ è l'inclinazione della biella di calcestruzzo compressa e deve essere $1 \le \cot \theta \le 2.5$

8.5 Criteri di verifica delle sezioni in acciaio

Le resistenze di progetto di un profilato in acciaio seguono le prescrizioni riportate al par. 4.2.4.1.2 del D.M. 17/01/2018 e al par. 6.2.9 del EN 1993-1-1:

• Flessione:

$$M_{Rd} = \frac{Wf_{yk}}{\gamma_{M0}}$$

Taglio:

$$V_{rd} = \frac{A_s \frac{f_{yk}}{\sqrt{3}}}{\gamma_{M0}}$$

Flessione biassiale:

$$\frac{N_{Ed}}{N_{Rd}} + \sqrt{\left(\frac{M_{y,Ed}}{M_{y,Rd}}\right)^2 + \left(\frac{M_{z,Ed}}{M_{z,Rd}}\right)^2} \le 1.0$$

Dove:

• W modulo di resistenza

• A_s area di taglio

 \bullet f_{vd} tensione di snervamento dell'acciaio

 \bullet γ_{M0} coefficiente parziale dei materiali pari a 1.05 (vedi Tabella 4.2.VII del D.M. 20/02/2018)

Secondo il paragrafo 6.2.5 dell'Eurocodice 3 – parte 1, il modulo di resistenza da utilizzare – elastico o plastico – dipende dalla classe della sezione trasversale dell'elemento.

Committente: 8.6 Verifica a

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 29

8.6 Verifica agli Stati Limite delle paratie

Rev. 0

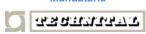
8.6.1 SLU

Nel rispetto delle norme vigenti (NTC 2018, par. 6.5.3.1.2), per le paratie devono essere prese in considerazione almeno le verifiche agli Stati Limite Ultimi (SLU) di seguito indicate.

- SLU di tipo Geotecnico (GEO) e di tipo idraulico (UPL e HYD)
 - o collasso per rotazione intorno a un punto dell'opera (atto di moto rigido);
 - o collasso per carico limite verticale;
 - sfilamento di uno o più ancoraggi;
 - o instabilità del fondo scavo in terreni a grana fine in condizioni non drenate;
 - o instabilità del fondo scavo per sollevamento;
 - sifonamento del fondo scavo;
 - o instabilità globale del complesso opera di sostegno- terreno;
- SLU di tipo strutturale (STR)
 - Raggiungimento della resistenza in uno o più ancoraggi;
 - o Raggiungimento della resistenza in uno o più puntoni o di sistemi di contrasto;
 - o Raggiungimento della resistenza strutturale della paratia;

La verifica di stabilità globale dell'insieme opera si sostegno-terreno deve essere svolta secondo l'Approccio 1 - Combinazione 2 (A2 + M2 + R2), tenendo conto dei valori dei coefficienti parziali sulle resistenze riportate nelle tabelle 6.2.I, 6.2. II e 6.8.I delle NTC 2018.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 1, considerando le due combinazioni di coefficienti


- Combinazione 1: (A1+M1+R1);
- Combinazione 2: (A2+M2+R1);

tenendo conto dei valori dei coefficienti riportati nelle tabelle 6.2.I e 6.2.II delle NTC 2018, con i coefficienti γ_R del gruppo R1 pari all'unità.

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_{F} (o γ_{E})	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ ₆₂	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Q_i}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

 $^{^{(}i)}$ Per i carichi permanenti G_2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γ_{G_1}

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 30

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	tan ${\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γe	1,0	1,25
Resistenza non drenata	c_{uk}	γ_{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

8.6.2 SLV

Come prescritto dalle NTC2018 Al Par. 7.11.1, le verifiche si eseguono con coefficienti parziali unitari sulle azioni e impiegando i parametri e le resistenze di progetto.

In accordo con il Capitolo 7.11.6.3.1 delle NTC2018, l'analisi della spinta delle terre in condizioni sismiche può essere effettuata seguendo un metodo pseudo-statico.

Questa tipologia di analisi consente di considerare l'azione dinamica indotta dal sisma attraverso una statica equivalente: essa è pari al prodotto delle forze di gravità per un opportuno coefficiente sismico. Nelle verifiche allo Stato Limite Ultimo (SLV) l'accelerazione laterale di progetto può essere calcolata mediante la seguente espressione:

$$k_h = \alpha \cdot \beta \quad \frac{a_{max}}{g}$$

Dove il coefficiente α è funzione della deformabilità dei terreni interagenti con la struttura e dell'altezza dell'opera, mentre β dipende dalla capacità della struttura di subire spostamenti. Tali coefficienti possono essere dedotti a partire dalle Figure 7.11.2 e 7.11.3 presenti nelle NTC2018 e di seguito riportate.

In ogni caso è necessario che $u_s \leq 0.005 \cdot H$

Se $\alpha \cdot \beta <$ 0,2 sarà da assumere $k_h =$ 0,2 $\cdot \frac{a_{max}}{g}$

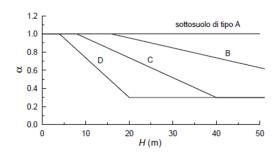


Figura 7.11.2 – Diagramma per la valutazione del coefficiente di deformabilità α

Figura 7.11.3 – Diagramma per la valutazione del coefficiente di spostamento β .

8.6.3 SLE

Per quanto riguarda le verifiche agli Stati Limite di Esercizio (SLE), è necessario verificare che gli spostamenti dell'opera siano compatibili con la corretta operabilità della struttura con la sicurezza e funzionalità del contesto circostante. Al fine di garantire quanto detto sopra, nel seguito si assume il seguente criterio:

$$\delta \leq 0.005 H$$

Dove:

• δ = spostamento laterale massimo della parata;

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente
Polcevera"

Progetto Definitivo

Pag. 31

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

H = altezza di scavo.

Committente:

8.7 Verifica dei tiranti di ancoraggio

Le verifiche di sicurezza agli SLU si riferiscono essenzialmente a due meccanismi di rottura:

- Collasso causato dalla mobilitazione della resistenza del terreno;
- Rottura degli elementi strutturali

Le verifiche sono condotte seguendo la combinazione A1+M1+R3, ove i coefficienti delle azioni e dei materiali sono riportati nelle precedenti tabelle, mentre per i coefficienti delle resistenze si fa riferimento alla Tab. 6.6.I delle NTC 2018.

Tab. 6.6.I - Coefficienti parziali per la resistenza degli ancoraggi

	Simbolo	Coefficiente parziale
Temporanei	γ_{R}	1,1
Permanenti	γ_{R}	1,2

Il valore caratteristico della resistenza a sfilamento dell'ancoraggio può essere determinato tramite:

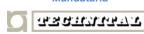
- Dati risultanti di prove di progetto su ancoraggi di prova;
- con metodi di calcolo analitici, dai valori caratteristici dei parametri geotecnici dedotti dai risultati di prove in sito e/o di laboratorio.

Nel caso (a), il valore della resistenza caratteristica R_{ak} è il minore dei valori derivanti dall'applicazione dei fattori di correlazione ξ_{a1} e ξ_{a2} riportati nella Tabella 6.6.Il rispettivamente al valor medio e al valor minimo delle resistenze R_{am} misurate nel corso delle prove:

$$R_{ak} = Min\left\{\frac{\left(R_{a,m}\right)_{medio}}{\xi_{a1}}; \frac{\left(R_{a,m}\right)_{min}}{\xi_{a2}}\right\}$$

Nel caso (b), il valore della resistenza caratteristica R_{ak} è il minore dei valori derivanti dall'applicazione dei fattori di correlazione ξ_{a3} e ξ_{a4} riportati nella Tabella 6.6.III rispettivamente al valor medio e al valor minimo delle resistenze R_{ac} ottenute dal calcolo.

Tab. 6.6.II - Fattori di correlazione per derivare la resistenza caratteristica da prove di progetto, in funzione del numero degli ancoraggi di prova


Numero degli ancoraggi di prova	1	2	> 2
ξ_{a1}	1,5	1,4	1,3
ξ_{a2}	1,5	1,3	1,2

Tab. 6.6.III - Fattori di correlazione per derivare la resistenza caratteristica dalle prove geotecniche, in funzione del numero n di profili di indagine

Numero di profili di indagine	1	2	3	4	≥5
ξ_{a3}	1,80	1,75	1,70	1,65	1,60
ξ_{a4}	1,80	1,70	1,65	1,60	1,55

Inoltre, si prescrive che nei tiranti di prova, l'armatura a trefoli dell'acciaio armonico del tratto libero deve essere dimensionata in modo che la resistenza caratteristica al limite di snervamento del tratto libero sia sempre maggiore del tiro massimo di prova.

Come ultima prescrizione infine, al Cap. C6.6.2 della Circolare applicativa delle NTC2018 si prescrive

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera" **Progetto Definitivo**

Rev. 0

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 32

che, nel caso in cui gli ancoraggi siano realizzati con elementi caratterizzati da rottura fragile (i.e. trefoli in acciaio armonico), per il rispetto della gerarchia delle resistenze a resistenza a sfilamento della fondazione dell'ancoraggio deve risultare minore della resistenza a snervamento dell'armatura.

8.8 Verifica di stabilità globale

8.8.1 SLU

Le verifiche di stabilità globale sono condotte secondo quanto specificato al Par. 6.8 delle NTC 2018 (Opere di materiali sciolti e fronti di scavo). Secondo quanto prescritto al Par. 6.8.2, le verifiche di stabilità globale sono condotte seguendo le seguenti combinazioni

Combinazione 2 dell'Approccio 1 (A2 + M2 + R2)

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2
$\gamma_{\scriptscriptstyle m R}$	1,1

Figura 8-2: Coefficienti parziali y_R le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo in condizioni statiche (tab.6.8.1 delle ntc2018)

8.8.2 **SLV**

Secondo quanto riportato al Cap. 7.11.4 delle NTC 2018, le verifiche in condizioni sismiche per i pendii ed i fronti di scavo riguardano la stabilità dei pendii, e possono essere utilizzati come metodi di verifica sia i metodi pseudostatici, sia metodi agli spostamenti. Per quanto riguarda la prima metodologia, l'azione sismica è rappresentata mediante un'azione statica equivalente proporzionale al peso del terreno. Le componenti verticale ed orizzontale di tale forza possono essere espresse come:

$$F_h = k_h \cdot W$$
$$F_v = k_v \cdot W$$

Dove i coefficienti k_h e k_v sono rispettivamente:

$$k_h = \beta_s \cdot \frac{a_{max}}{g}$$

$$k_v = \pm 0.5 \cdot k_h$$

 β_s è un coefficiente riduttivo dell'accelerazione massima, che tiene conto delle deformazioni attese dal sistema, e quindi dipende in generale dalla categoria di sottosuolo e dall'accelerazione attesa. Per quanto riguarda i fronti di scavo ed i rilevati, la normativa suggerisce i seguenti valori del coefficiente:

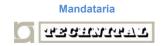
Tab. 7.11.I - Coefficienti di riduzione dell'accelerazione massima attesa al sito

	Categoria di	i sottosuolo
	A	B, C, D, E
	$\beta_{\mathbf{s}}$	$\beta_{\mathbf{S}}$
$0.2 < a_g(g) \le 0.4$	0,30	0,28
$0.1 < a_g(g) \le 0.2$	0,27	0,24
$a_g(g) \le 0.1$	0,20	0,20

Nelle verifiche di sicurezza si deve controllare che la resistenza del sistema sia maggiore delle azioni impiegando lo stesso approccio di cui al § 6.8.2 per le opere di materiali sciolti e fronti di scavo, ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici (§ 7.11.1) e impiegando le resistenze di progetto calcolate con un coefficiente parziale pari a γ_R = 1.2.

Infine, si nota che le verifiche dell'opera sono condotte considerando l'opera isolata, ovvero non

Comune di Genova


"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 33

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

interagente con altri manufatti esistenti.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 34

9. ANALISI DEI CARICHI

Si considerano i seguenti carichi nel calcolo delle sollecitazioni agenti sulle paratie:

- Carichi permanenti G1:
 - o Peso proprio del terreno;
 - Peso proprio delle strutture. Per il calcestruzzo armato e la malta si è assunto un valore di 25 kN/m³;
 - Spinta dell'acqua (peso specifico = 9,81 kN/m³);
 - o Spinta delle terre.
- · Carichi variabili Q:
 - Sovraccarico dovuto alla presenza di veicoli pari a 20 kPa
- · Azione del sisma:
 - Spinta delle terre

Poiché il modello di calcolo utilizzato per l'analisi schematizza una striscia di paratia profonda 1.0 m (sviluppo in direzione longitudinale) nel seguito i carichi e le sollecitazioni si intendono riferiti a detta striscia unitaria.

9.1 Carichi permanenti

Le pressioni nel terreno sono determinate sulla base dei pesi specifici delle stratigrafie relative al manufatto (Cap. 6 del presente documento).

Nella presente analisi (terreno a monte e a valle inclinato) si è deciso di utilizzare la formulazione di Muller – Breslau per la definizione dei coefficienti di spinta attiva e passiva:

$$K_a = rac{cos^2(\phi'-eta)}{cos^2eta\cdot cos(\delta+eta)\cdot \left[1+\sqrt{rac{sin(\delta+\phi')\cdot sin(\phi'-i)}{cos(\delta+eta)\cdot cos(i-eta)}}
ight]^2} \ K_p = rac{cos^2(\phi'+eta)}{cos^2eta\cdot cos(\delta-eta)\cdot \left[1-\sqrt{rac{sin(\delta+\phi')\cdot sin(\phi'+i)}{cos(\delta-eta)\cdot cos(i-eta)}}
ight]^2}$$

9.2 Carichi variabili

Si considera la presenza di mezzi di cantiere in corrispondenza della strada. Tali mezzi esercitano una pressione di 20 kPa.

9.3 Azione sismica

La spinta delle terre è calcolata attraverso il metodo di Mononobe-Okabe.

Tale metodo si rifà all'analisi dell'equilibrio limite di un cuneo di terreno instabile a contatto con l'opera di sostegno, con superficie di scorrimento piana (metodo di Coulomb); in più, però, il metodo tiene conto della forza d'inerzia della massa del cuneo instabile, considerata applicata nel baricentro del cuneo

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 35

stesso, derivante dall'accelerazione sismica.

A tale scopo, nella definizione del coefficiente di spinta attiva, il metodo considera un angolo di rotazione addizionale:

$$\theta = \arctan\left(\frac{k_h}{1 \mp k_v}\right)$$

dove k_h e k_v sono i coefficienti sismici, rispettivamente orizzontale e verticale definiti all'inizio del presente paragrafo.

L'espressione del coefficiente di spinta attiva si modifica, pertanto, come segue:

per $\beta \leq \varphi - \theta$:

$$K_{a,s} = \frac{sen^2(\psi + \phi - \theta)}{cos\theta \cdot sen^2\psi \cdot sen(\psi - \theta - \delta) \cdot \left[\left(1 + \sqrt{\frac{sen(\phi + \delta) \cdot sen(\phi - \beta - \theta)}{sen(\psi - \theta - \delta) \cdot sen(\psi + \beta)}} \right) \right]^2}$$

per $\beta > \varphi - \theta$:

$$K_{a,s} = \frac{sen^{2}(\psi + \phi - \theta)}{cos\theta \cdot sen^{2}\psi \cdot sen(\psi - \theta - \delta)}$$

La spinta del terreno a tergo del muro in condizioni sismiche, pertanto, si valuta semplicemente sostituendo al coefficiente di spinta attiva in condizioni statiche k_a il coefficiente k_{as} sopra definito: $P_{A} = 0.5 \cdot \gamma' \cdot k_{a,s} \cdot H.$

Secondo quanto riportato al capitolo precedente nei metodi pseudostatici l'accelerazione orizzontale equivalente agente su una paratia può essere calcolata mediante la seguente formula (Eq. 7.11.9 delle NTC 2018):

$$a_h = \alpha \cdot \beta \cdot a_{max}$$

Dove α tiene conto della deformabilità dei terreni interagenti, mentre β dipende dalla capacità dell'opera di subire spostamenti senza perdite di resistenza.

Vista la natura dei terreni presenti, e in via cautelativa, si assumono entrambi i coefficienti pari all'unità.

Nei calcoli si è trascurata la componente idrodinamica durante il sisma.

Nel software di calcolo utilizzato questo corrisponde ad un rilevato dinamicamente impervio (ipotesi generalmente valida per permeabilità inferiori a $5\cdot 10^{-4}$ m/s. In tali condizioni l'acqua, rimanendo intrappolata all'interno degli interstizi, si muove solidalmente al terreno. Sulla paratia agirà quindi un'azione dovuta ad una massa complessiva acqua +terreno, definita quindi dal peso specifico γ_{Sat} . Trascurando la variazione delle pressioni interstiziali ed essendo la traslazione differenziale tra acqua e terreno impedita, il contributo dell'acqua sarà legato unicamente alla componente idrostatica.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 36

10. PARATIA "OPERA DI PRESA"

10.1 Descrizione dei modelli di calcolo

10.1.1 Geometria

L'opera ha la funzione di sostegno dello scavo necessario per realizzare l'opera di presa definitiva.

La sezione di dimensionamento scelta è quella che garantisce la massima altezza dello scavo, ovvero la sezione 2 riportata di seguito. Le altezze di scavo sono 11,45 m e 11,72 m, rispettivamente per il lato sud e il lato nord.

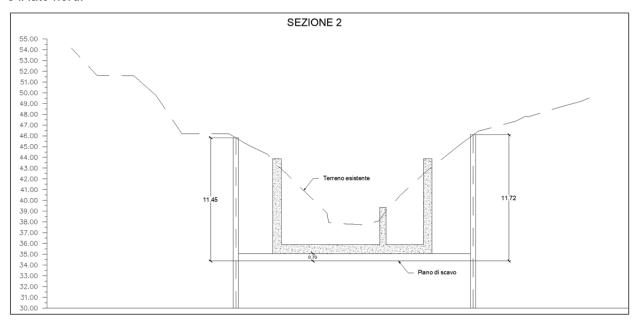


Figura 10-1: Paratia "opera di presa" - Sezione di verifica

Nelle seguenti tabelle sono riportate le grandezze geometriche della paratia e degli ancoraggi:

Paratia


Diametro di perforazione [m]	0.25
Profilo tubolare	Ø168.3 mm sp. 10 mm
Lunghezza [m]	17.0
Interasse [m]	0.60

Tabella 10-1: Paratia "opera di presa" - Geometria dei micropali

Ancoraggi

Progettista:

Tipo	Tirante a 3 trefoli
Acciaio	Y1770
Diametro perforazione [mm]	150
Ordini	1
Posizione da testa trave di	2.5 m circa
coronamento [m da testa paratia]	
Lunghezza libera [m]	8.5

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 37

Bulbo d'ancoraggio [m]	9
Interasse [m]	2.4
Pretiro [kN]	200
Inclinazione	15°

Tabella 10-2: Paratia "opera di presa" - Geometria degli ancoraggi

Le travi di ripartizione (una per ciascun ordine di tiranti) sono composte da 2 profili HEA220.

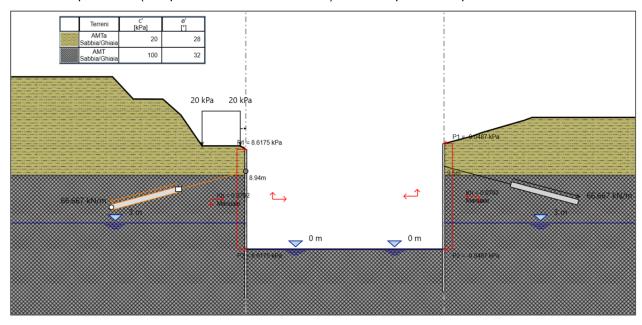


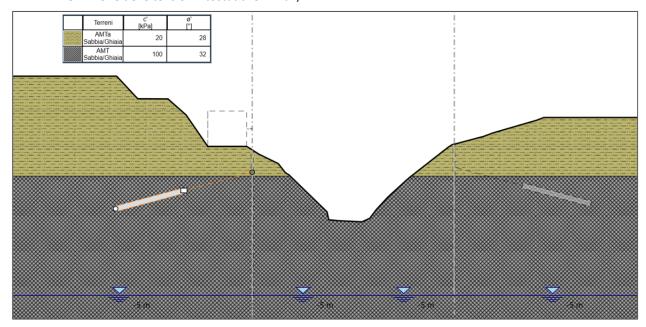
Figura 10-2: Paratia "opera di presa" - Sezione di progetto nel software di calcolo

10.1.2 Fasi costruttive

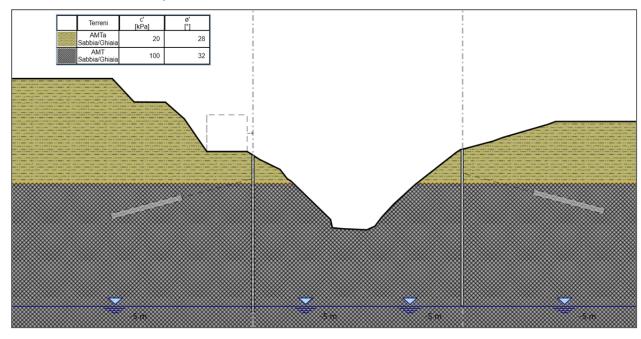
Per la modellazione della costruzione dell'opera, si sono considerate le seguenti fasi:

- 1. Definizione delle tensioni litostatiche iniziali;
- 2. Realizzazione della paratia;
- 3. Scavo a 3,0 m dalla quota d'infissione;
- 4. Installazione dei tiranti a 2,5 m dalla quota d'infissione;
- 5. Scavo a 5 m dalla quota d'infissione;
- 6. Scavo fino alla quota di progetto;
- 7. Innalzamento della falda
- 8. Applicazione del sisma.

Comune di Genova Committente:


"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

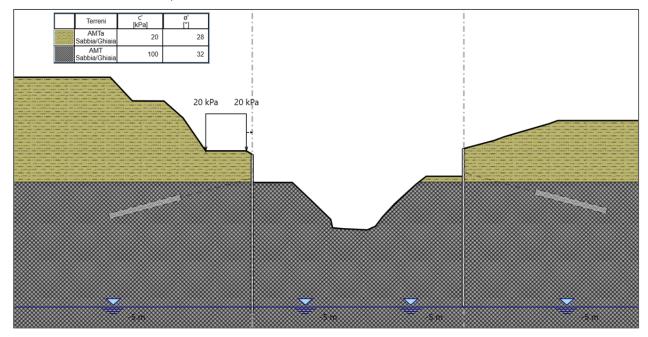
Progetto Definitivo


Pag. 38

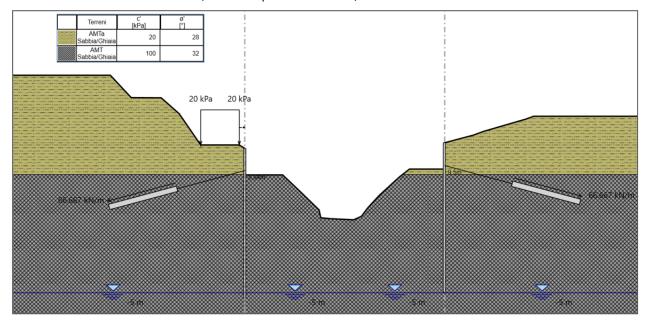
Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Definizione delle tensioni litostatiche iniziali;

Realizzazione della paratia;


Comune di Genova Committente:

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"


Progetto Definitivo

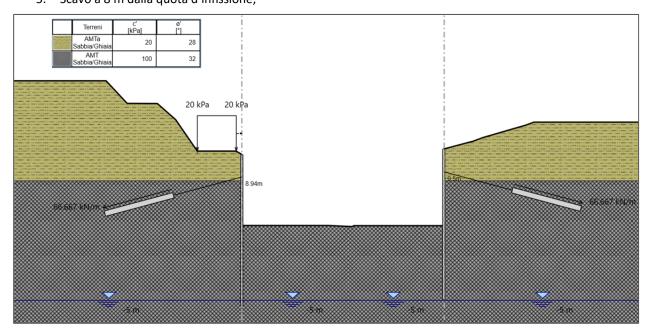
Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 39

3. Scavo a 3,0 m dalla quota d'infissione;

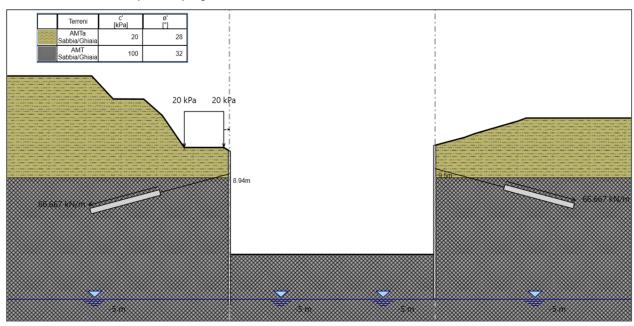
Installazione dei tiranti a 2,5 m dalla quota d'infissione;

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"


Progetto Definitivo

Pag. 40


09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

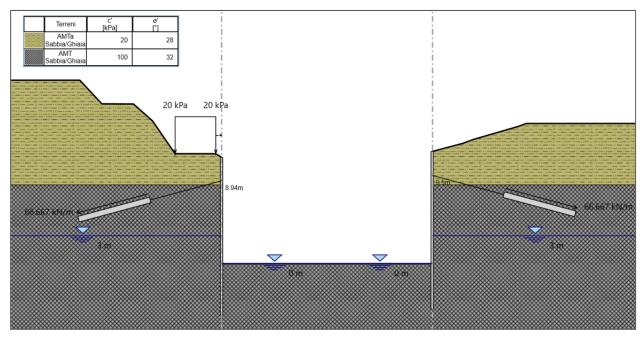
5. Scavo a 8 m dalla quota d'infissione;

Rev. 0

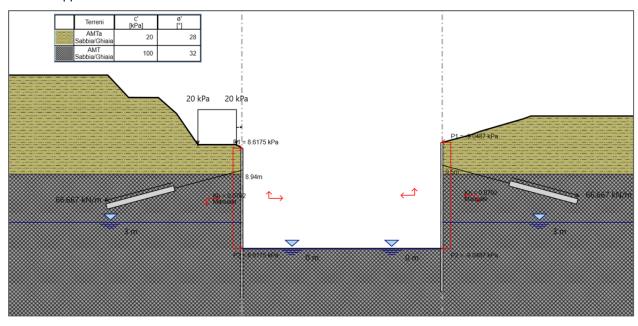
Scavo fino alla quota di progetto;

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"


Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada


Pag. 41

7. Innalzamento della falda

Rev. 0

Applicazione del sisma.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 42

10.2 Risultati dell'analisi

10.2.1 Micropali

Nel presente capitolo sono riportati i massimi valori delle azioni interne ai micropali ai vari Stati Limite (SLU/SLV, SLE-rara, SLE-frequente).

SLU/SLV				SLE-rara				SLE-freq									
MAX T	112	kN	prof.	-0.66	m	MAX T	57	kN	prof.	0.00	m	MAX T	32	kN	prof.	8.94	m
MAX M ⁺	72	kNm	prof.	4.74	m	MAX M⁺	32	kNm	prof.	3.94	m	MAX M ⁺	12	kNm	prof.	2.14	m
MAX M	113	kNm	prof.	-0.059997	m	MAX M	57	kNm	prof.	0.00	m	MAX M	20	kNm	prof.	-0.26	m
						δ^{+}	16.7	mm	prof.	4.14	m	δ^{+}	4	mm	prof.	3.14	m
						δ	0.0	mm	prof.	8.94	m	δ	0	mm	prof.	8.94	m

Tabella 10-3: Paratia "opera di presa" - Azioni e spostamenti massimi ai diversi Stati Limite

Committente: Comune di Genova "Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente

Polcevera" **Progetto Definitivo**

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 43

Di seguito sono riportati i diagrammi degli inviluppi delle azioni interne:

SLU/SLV - Momento flettente

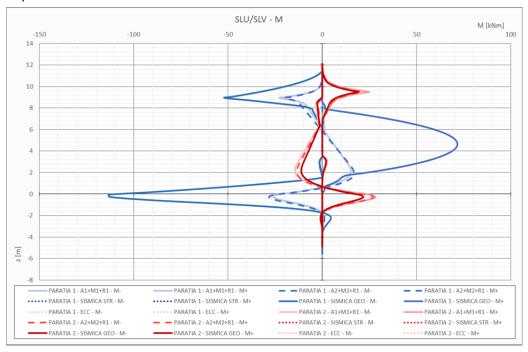


Figura 10-3: Paratia "opera di presa" - SLU/SLV - Inviluppo dei momenti flettenti

SLU/SLV - Taglio

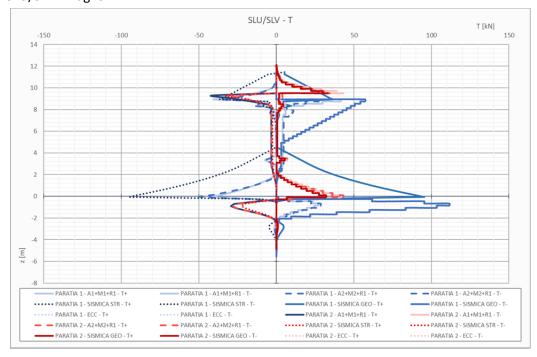


Figura 10-4: Paratia "opera di presa" - SLU/SLV - Inviluppo dei tagli

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 44

SLE-rara - Momento flettente

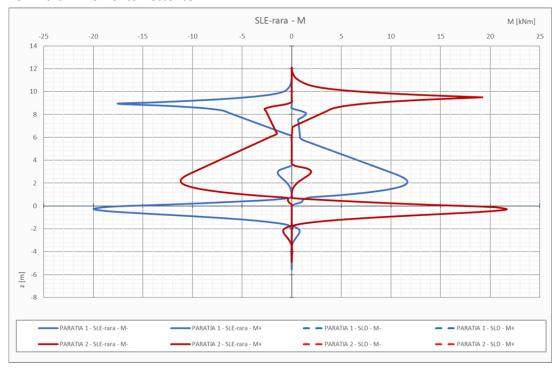


Figura 10-5: Paratia "opera di presa" - SLE-rara/SLD - Inviluppo dei momenti flettenti

SLE-rara - Spostamento laterale

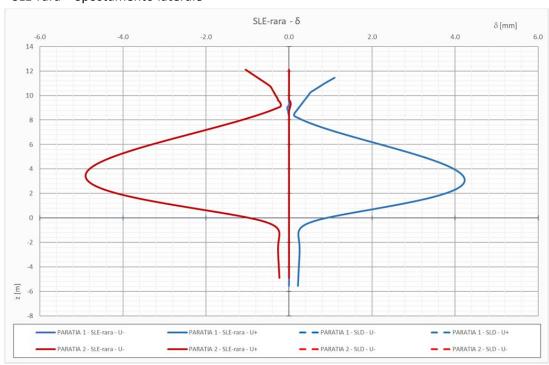


Figura 10-6: Paratia "opera di presa" - SLE-rara/SLD - Inviluppo degli spostamenti laterali

Committente: Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 45

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

SLE-frequente - Momento flettente

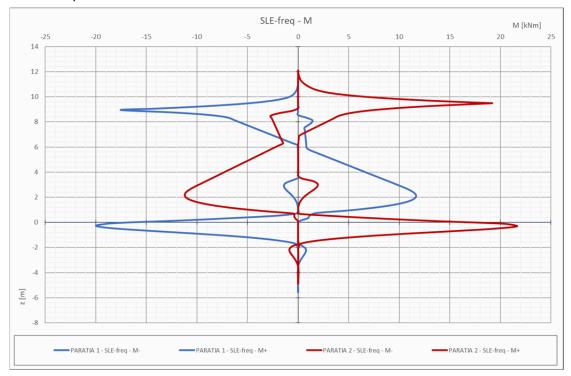


Figura 10-7: Paratia "opera di presa" - SLE-frequente - Inviluppo dei momenti flettenti

SLE-frequente – Spostamento laterale

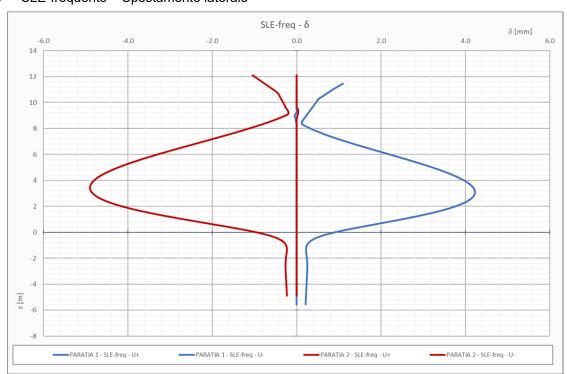


Figura 10-8: Paratia "opera di presa" - SLE-frequente - Inviluppo degli spostamenti laterali

Progettista:

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 46

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

10.2.2 Sistemi di ancoraggio

Di seguito si riportano le massime azioni sugli ancoraggi:

	AZIONI TIRANTI			
Tirante	SL	N	F _s GEO	F _s STR
Triante_2.5m_sx	SLU	298	1.08	1.90
Triante_2.5m_sx	SLE-rara	207	1.55	2.73
Triante_2.5m_sx	SLE-freq	200	3.18	2.82
Tirante_2.5m_dx	SLU	261	1.23	2.17
Tirante_2.5m_dx	SLE-rara	201	1.60	2.82
Tirante_2.5m_dx	SLE-freq	201	3.17	2.82

Tabella 10-4: Paratia "opera di presa" - Massime azioni sui sistemi di ancoraggio

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 47

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

10.3 Verifiche strutturali

10.3.1 Verifica del profilo in acciaio dei micropali

Il momento ed il taglio resistente segue quanto prescritto al Par. 4.2.4.1.2 del D.M. 17/01/2018 e Par. 6.2.9 del EN 1993-1-1.

Nel caso in esame si verifica la struttura considerando un comportamento non dissipativo ($\alpha = \beta = 1$, vedasi Cap. 7)

Le azioni massime sulla paratia sono le seguenti:

- $V_{max} = 112 \text{ kN}$
- $M_{max} = 113 \text{ kNm/m}$

A cui corrispondono delle azioni sul singolo micropalo (passo 0,60 m)

- $V_{\text{max}} = 67,2 \text{ kN}$
- $M_{max} = 67.8 \text{ kNm/m}$

Utilizzando un profilo tubolare metallico Ø168,3 mm sp. 8 mm si ottengono le seguenti resistenze:

Tipo comb	oo comb M _{Ed} [kNm] V _{Ed}		M _{ed,palo} [kNm]	V _{ed,palo} [kN]
SLU	SLU 112.0		67.8	67.2

Tipo comb	Tipo profilo	W _{el} [mm ³]	A [mm²]	M _{Ed} [kNm]	M _{Rd} [kNm]	f _{yk} [MPa]	f _{yd} [MPa]	F _{S,M}
SLU	D 168,3 s 10	250922	4973	67.8	81	355.00	338.10	1.19
			A _v [mm ²]	V _{Ed} [kN]	V _{Rd} [kN]			F _{S,V}
			3166	67.2	589			8.76

Tabella 10-5: Paratia "opera di presa" - Resistenza e fattori di sicurezza dei profili metallici

Le verifiche risultano pertanto soddisfatte.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 48

10.3.2 Verifica del sistema di ancoraggio

10.3.2.A Resistenza allo sfilamento del bulbo d'ancoraggio

La resistenza allo sfilamento dell'ancoraggio è valutata seguendo l'approccio proposto da Bustamante e Doix (1985):

$$\boldsymbol{Q}_{lim} = \frac{\pi \boldsymbol{d}_{s}\boldsymbol{L}_{s}\boldsymbol{q}_{s,k}}{\gamma_{R}}$$

Dove:

- Diametro del bulbo d'ancoraggio d_{S}
- Lunghezza dell'ancoraggio
- Massimo sforzo di taglio all'interfaccia palo/terreno q_s

Mentre L_s è un parametro arbitrario, i parametri d_s e q_s dipendono da diversi fattori, principalmente la tecnologia utilizzata ed il tipo di terreno.

I metodi di realizzazione dei tiranti possono essere suddivisi in tre principali tipologie:

- Iniezione a gravità: la malta cementizia è inserita nel foro senza l'applicazione di pressioni;
- Pali IGU (Injection Global Unique) o pali Radice: il getto del palo è realizzato mediante un'unica iniezione ad una pressione inferiore rispetto a quella utilizzata nei pali IRS;
- Pali IRS (Injection Répétitive et Sélective) o tipo Tubfix: mediante l'uso di tubi a Manchétte è possibile iniettare la malta a pressioni maggiori e controllare e ripetere le iniezioni.

I pali tipo IRS in generale garantiscono il raggiungimento di diametri maggiori ed una tensione tangenziale massima maggiore rispetto ai pali IGU.

Il diametro del palo d_s può essere calcolato come:

$$d_s = \alpha \cdot d$$

Dove:

- Diametro del foro d
- $\alpha \ge 1$ Coefficiente maggiorativo, funzione della tecnologia e del terreno

Nella tabella seguente sono mostrati i valori che assume il coefficiente α in funzione delle variabili sopra citate.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 49

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Type of soil	Value	es of α	Minimum suggested grout volume*
	IRS	IGU	
Gravel	1.8	1.3 - 1.4	1.5 V _S
Sandy gravel	1.6 - 1.8	1.2 - 1.4	1.5 V _S
Gravelly sand	1.5 - 1.6	1.2 - 1.3	1.5 V _S
Coarse sand	1.4 - 1.5	1.1 - 1.2	1.5 V _S
Medium sand	1.4 - 1.5	1.1 - 1.2	1.5 V _S
Fine sand	1.4 - 1.5	1.1 - 1.2	1.5 V _S
Silty sand	1.4 - 1.5	1.1 - 1.2	IRS: (1.5 - 2)V _S ; IGU: 1.5V _S
Silt	1.4 - 1.6	1.1 - 1.2	IRS: 2V _S ; IGU: 1.5V _S
Clay	1.8 - 2.0	1.2	IRS: $(2.5 - 3)V_S$; IGU: $(1.5 - 2)V_S$
Marl	1.8	1.1 - 1.2	$(1.5-2)V_S$ for stiff layers
Marly limestone			
Weathered or	1.8	1.1 - 1.2	$(2-6)V_S$ or more for fractured layers
fractured limestone			
Weathered and/or			$(1.1 - 1.5)V_S$ for slightly fractured layers
fractured rock	1.2	1.1	2V _S or more for fractured layers

Tabella 10-6: valori di lpha secondo quanto proposto da Bustamante & Doix

Il valore di q_s è invece dedotto da prove sperimentali, ed è espresso in funzione dei risultati ottenuti mediante prove pressiometriche o SPT. Gli autori hanno fornito utili grafici per la determinazione di q_s : per diverse tipologie di terreno esistono due curve, dipendenti dalla tecnologia utilizzata (IGU o IRS). Di seguito sono mostrate le curve da utilizzare in funzione dei parametri sopra citati.

Terreno	Tipo di	iniezione
Terreno	IRS	IGU
Da ghiaia a sabbia limosa	SG1	SG2
Limo e argilla	AL1	AL2
Marna, calcare marnoso, calcare tenero fratturato	MC1	MC2
Roccia alterata e/o fratturata	≥R1	≥ R2

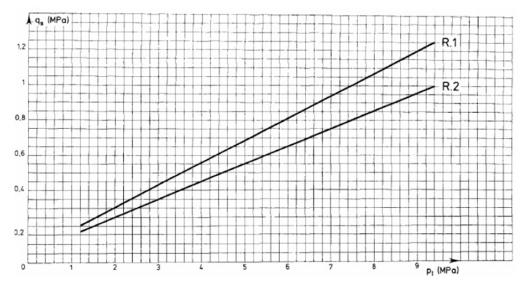


Figura 10-9: Massimo sforzo laterale di un micropalo in roccia fratturata (Bustamante & Doix)

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 50

Sulla base di tali osservazioni, sono stati definiti cautelativamente i seguenti parametri:

Tipologia di terreno: strato 1 e 2 (roccia più o meno fratturata);

- Tecnologia costruttiva: IGU
- Diametro del foro = 0.15 m;
- $q_s = 0.15 \text{ MPa} = 150 \text{ kPa}$

È da notare che il valore del massimo sforzo di taglio è frutto di un'assunzione, basata sulla letteratura disponibile, poiché in assenza di informazioni dettagliate per il caso in esame. In fase costruttiva sarà da confermare o eventualmente correggere l'ipotesi fatta nel presente documento riguardo allo sforzo massimo. A tal riguardo, si demanderà l'esecuzione un numero di prove su tiranti di prova conforme a quanto prescritto al Par. 6.6.4 delle NTC2018.

Come riportato al Par. 8.7, il valore caratteristico della resistenza è ottenuto dividendo il valore calcolato per un coefficiente ξ_a , assunto cautelativamente pari a 1,8, cosicché la resistenza di progetto può essere calcolato come segue:

$$Q_{lim} = \frac{\sum \pi d_s L_s q_{s,k}}{\gamma_R} = \frac{1}{\gamma_R} \cdot \pi \cdot (\alpha \cdot D) \cdot L_s \cdot \left(\frac{q_s}{\xi_a}\right) = \frac{1}{1,1} \cdot \pi \cdot (\alpha \cdot 0.15 \text{ m}) \cdot 9 \text{ m} \cdot \frac{150 \text{ kPa}}{1.8} = 322 \text{ kN}$$

Il fattore di sicurezza, inteso come rapporto tra resistenza ed azione, vale:

$$F_S = \frac{R_d}{E_d} = \frac{322 \ kN}{298 \ kN} = 1,08 \ge 1$$

La verifica è quindi soddisfatta

10.3.2.B Resistenza strutturale della barra d'ancoraggio

La resistenza strutturale è ricavata dal catalogo del produttore:

$$N_{Rd} = 655 \text{ kN}$$

Numero	Sezione tras-	Peso	Y1770 Standard			Y·	1860 High Grad	de
	versale		Snervamento	Ultimo	Omolog.	Snervamento	Ultimo	Omolog.
	Α		F _{p0,1k}	F _{pk}		F _{p0,1k}	F _{pk}	
	[mm ²]	[kg/m]	[kN]	[kN]	О О × Δ	[kN]	[kN]	
1	140	1.09	218	248	$\circ \times \diamond$	230	260	\triangle
2	280	2 10	127	496	0 × Δ	459	521	Δ
3	420	3.28	655	743	$0 \times \Delta$	689	781	Δ
4	500	4.37	874	991		918	1,042	Δ
5	700	5.47	1,092	1,239	OXA	1,148	1,302	Δ
6	840	6.56	1,310	1,487	OXA	1,378	1,562	Δ
7	980	7.65	1,529	1,735	$0 \times \Delta$	1,607	1,823	Δ
8	1,120	8.74	1,747	1,982	0 × Δ 0 × Δ	1,837	2,083	Δ
9	1,260	9.84	1,966	2,230	$\circ \times \diamond$	2,066	2,344	Δ
10	1,400	10.93	2,184	2,478	$0 \times \Delta$	2,296	2,604	Δ
11	1,540	12.02	2,402	2,726	$\circ \times \circ$	2,526	2,864	Δ
12	1,680	13.12	2,621	2,974	0 4	2,755	3,125	Δ
13	1,820	14.21	2,839	3,221	0 4	2,985	3,385	Δ
14	1,960	15.30	3,058	3,469	Ο Δ	3,214	3,646	Δ
15	2,100	16.40	3,276	3,717	Ö	3,444	3,906	
16	2,240	17.49	3,494	3,965	0	3,674	4,166	
17	2,380	18.58	3,713	4,213	Ö	3,903	4,427	
18	2,520	19.67	3,931	4,460	0	4,133	4,687	
19	2,660	20.77	4,150	4,708	0	4,362	4,948	
20	2,800	21.86	4,368	4,956	000000000	4,592	5,208	
21	2,940	22.95	4,586	5,204	0	4,822	5,468	
22	3,080	24.05	4,805	5,452		5,051	5,729	

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 51

Resistenza dell'aderenza tra bulbo e barra


Si può assumere che all'interfaccia tra la barra ed il bulbo si possa generare uno sforzo massimo di taglio pari a:

$$au_2 = rac{f_{ctk}}{\gamma_{cls}} = ext{1,2 Mpa}$$

La massima azione assiale sopportabile è dunque ottenuta moltiplicando tale valore per la superficie di contatto, assunta pari alla superficie laterale della barra. Si ottiene pertanto:

$$\begin{split} N_{2,k} &= \tau_2 \cdot \pi \cdot D \quad \cdot L_{bulbo} = 1,2 \frac{N}{mm^2} \cdot \pi \cdot 73 \text{ mm} \cdot 8 \text{ m} = 2201 \text{ kN} \\ N_{2,d} &= \frac{N_{2,k}}{\gamma_f} = \frac{2201}{1,3} = 1694 \text{ kN} \end{split}$$

Entrambe le resistenze sono maggiori rispetto a quelle sollecitanti.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 52

10.3.3 Verifica della lunghezza libera degli ancoraggi

La verifica della lunghezza libera consiste nell'accertare che il bulbo di ancoraggio dei tiranti sia interamente esterno alla regione di terreno soggetta a rottura, ossia, secondo la teoria di Coulomb, quel volume di terreno compreso entro una regione delimitata dalla paratia e da una retta inclinata di $\frac{\pi}{4} + \frac{\phi}{2}$ rispetto alla verticale.

Inoltre, al Cap. 7.11.6.4 della normativa cogente si prevede che, per tenere conto del fatto che la superficie di scorrimento in condizioni sismiche è meno inclinata rispetto all'orizzontale rispetto alle condizioni statiche, la lunghezza libera sia maggiorata tramite un coefficiente legato alla massima accelerazione in sito:

$$L_e = L_s \left(1 + 1.5 \frac{a_{max}}{g} \right)$$

Considerando un'accelerazione massima pari a 0,096 g, si ottiene un fattore maggiorativo pari a 1,12.

La superficie di scorrimento del cuneo di rottura attraversa due strati. In tali regioni, la superficie di rottura è inclinata rispetto all'orizzontale di un angolo uguale a:

• Strato 1:
$$\theta = \frac{\pi}{4} + \frac{\phi'}{2} = 45^{\circ} + \frac{28^{\circ}}{2} = 59^{\circ}$$

• Strato 2: $\theta = \frac{\pi}{4} + \frac{\phi'}{2} = 45^{\circ} + \frac{32^{\circ}}{2} = 61^{\circ}$

• Strato 2:
$$\theta = \frac{\pi}{4} + \frac{\phi'}{2} = 45^{\circ} + \frac{32^{\circ}}{2} = 61^{\circ}$$

Nella seguente figura è mostrata una sezione del manufatto, i tiranti, la zona soggetta a rottura per spinta attiva (statica) e in arancione l'area a collasso per spinta attiva. Nella tabella sottostante sono riassunti i risultati derivanti dalla geometria dell'opera e dalle considerazioni precedentemente esposte.

Essendo le lunghezze libere dei tiranti maggiori delle dimensioni del cuneo di rottura alle rispettive altezze, la verifica risulta soddisfatta.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 53

Ordine di tiranti	Lunghezza nel cuneo di rottura	Lunghezza nel cuneo di	Lunghezza libera
	statico	rottura sismico	
	[m]	[m]	[m]
Tirante SX	7.22	8.09	8.5
Tirante DX	7.18	8.04	8.5

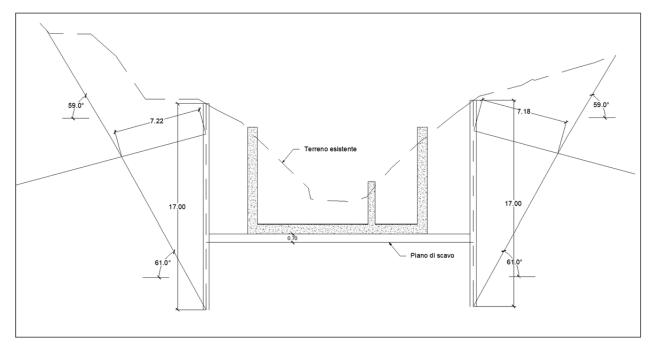
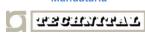


Figura 10-10: Paratia "opera di presa" - Verifica della lunghezza libera dei tiranti


10.3.4 Verifica della gerarchia delle resistenze

Secondo quanto riportato 6.6.2 delle NTC2018, la gerarchia delle resistenze per i sistemi di ancoraggio è da garantire qualora l'ancoraggio sia realizzato mediante trefoli in acciaio armonico.

Nel caso in esame, si hanno le seguenti resistenze:

- Sfilamento del bulbo = 321 kN
- Resistenza del trefolo = 655 kN

Essendo la resistenza del trefolo maggiore di quella del bulbo, si garantisce un comportamento duttile della struttura.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 54

10.3.5 Verifica della trave di ripartizione

La verifica della trave di ripartizione è condotta utilizzando il freeware Profili_v6, messo a disposizione gratuitamente dal prof. Pietro Gelfi. La procedura seguita fa riferimento a quanto riportato al Cap. 6.3.3 dell'Eurocodice 3-1 per le verifiche a instabilità flessionale (svergolamento).

Il dimensionamento è svolto considerando l'ordine di tiranti più sollecitato. Nella figura sotto, che riporta l'inviluppo delle azioni sui tiranti (per unità di lunghezza), si evince che il carico massimo è pari a 87 kN/m.

Poiché la sezione in esame è posta all'incirca in mezzeria rispetto allo sviluppo totale, il massimo momento agente può essere calcolato con buona approssimazione come quello generato da un carico uniformemente distribuito su una trave su più appoggi:

$$M = \frac{pl^2}{10}$$

L'azione dei tiranti è inoltre inclinata, pertanto si sono calcolati i momenti flettenti generati da ciascuna delle due componenti della forza:

$$p_x = 87 \frac{kN}{m} \cdot \cos(15^\circ) = 84 \frac{kN}{m}$$
$$p_y = 87 \frac{kN}{m} \cdot \sin(15^\circ) = 23 \frac{kN}{m}$$

I momenti flettenti generati su ciascun profilo resistente saranno la metà di quelli derivanti dai carichi:

$$M_y = \frac{pl^2}{10} = 78 \, kNm$$

$$M_z = \frac{pl^2}{10} = 21 \, kNm$$

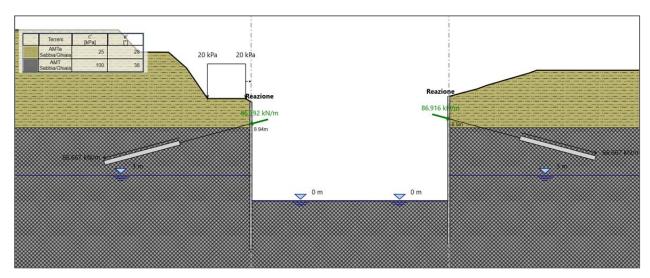


Figura 10-11: Paratia "opera di presa" - Massime azioni sulla trave di ripartizione

I profili adottati sono 2 HEA220 in acciaio S355. Utilizzando il programma Profili_v6 precedentemente

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 55

citato, si ottiene un fattore di sicurezza uguale a 0,86, pertanto la verifica è soddisfatta.

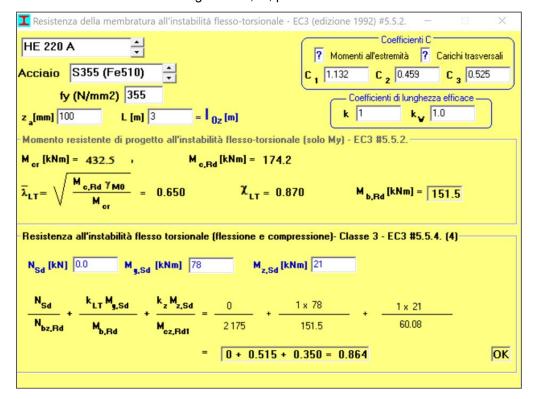


Figura 10-12: Paratia "opera di presa" - Verifica a svergolamento della trave di ripartizione

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente
Polcevera"

Progetto Definitivo
Rev. 0 09/2022 Relazione di calcolo: Paratie c

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 56

10.4 Verifica degli spostamenti

Gli spostamenti laterali sono valutati con riferimento alla combinazione SLE.

Facendo riferimento al diagramma degli inviluppi degli spostamenti di cui alle immagini seguenti, lo spostamento massimo della berlinese (lato nord) vale 4,9 mm. In termini relativi rispetto all'altezza di scavo (11,72 m), il valore dello spostamento è:

$$\delta_r = \frac{\delta}{H} = \frac{0,0167 \ m}{11,72 \ m} = 0,00142$$

Questi spostamenti si ritengono adeguati a garantire la corretta operabilità della struttura e delle opere circostanti.

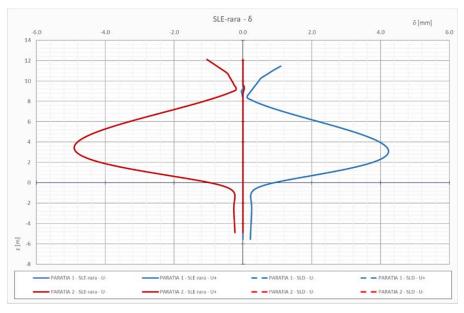


Figura 10-13: Paratia "opera di presa" - Diagramma dell'inviluppo degli spostamenti nella combinazione SLE

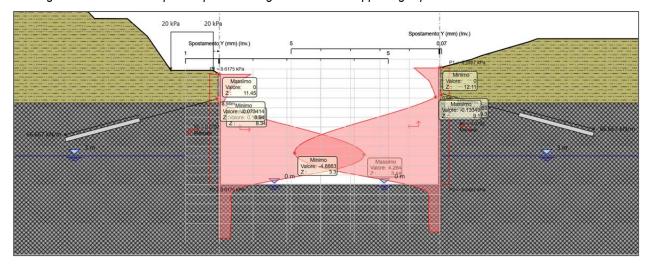


Figura 10-14: Paratia "opera di presa" - Schermata dell'inviluppo degli spostamenti nella combinazione SLE

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 57

11. PARATIA "LATO STRADA"

11.1 Descrizione dei modelli di calcolo

Rev. 0

11.1.1 Geometria

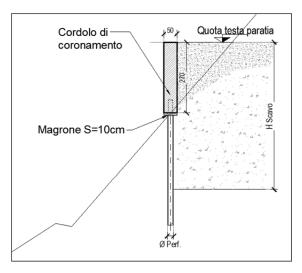


Figura 11-1: Paratia "lato strada" - Sezione di verifica

Nelle seguenti tabelle sono riportate le grandezze geometriche della paratia e degli ancoraggi:

Diametro di perforazione [m]	0.25
Profilo tubolare	Ø168.3 mm sp. 8 mm
Lunghezza micropalo [m]	6.0
Interasse [m]	0.60
Altezza paramento [m]	2.70
Larghezza paramento [m]	0.50

Tabella 11-1: Paratia "lato strada" - Geometria dei micropali

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 58

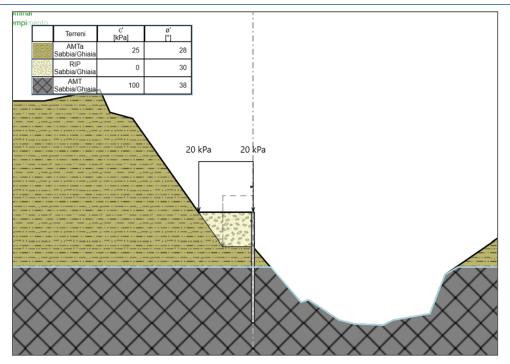


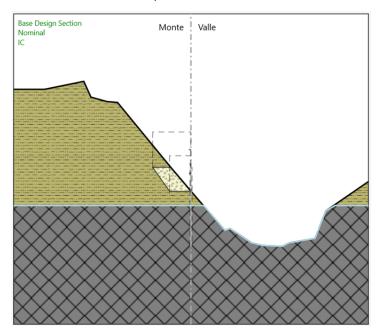
Figura 11-2: Paratia "lato strada" - Sezione di progetto nel software di calcolo

Comune di Genova

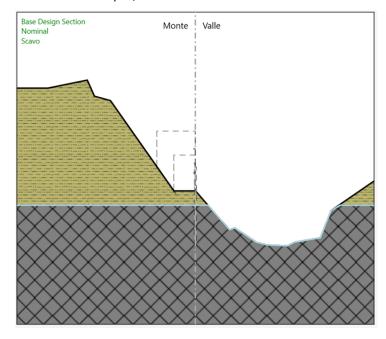
"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 59


Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

11.1.2 Fasi costruttive

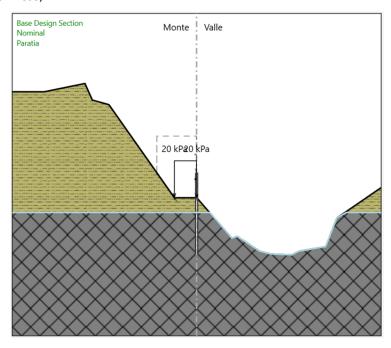

Committente:

Per la modellazione della costruzione dell'opera, si sono considerate le seguenti fasi:

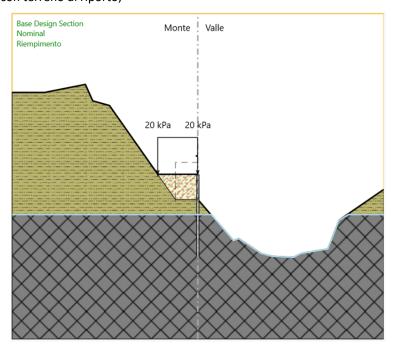
- 1. Definizione delle tensioni litostatiche iniziali;
- 2. Scavo per la realizzazione dei micropali;
- 3. Realizzazione della berlinese;
- 4. Riempimento con terreno di riporto;
- 5. Applicazione del sisma.
- 1. Definizione delle tensioni litostatiche iniziali;

2. Scavo per la realizzazione dei micropali;

Comune di Genova


"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo


Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 60

Realizzazione della berlinese;

3. Riempimento con terreno di riporto;

4. Applicazione del sisma.

Committente: Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 61

11.2 Risultati dell'analisi

Nel presente capitolo sono riportati i massimi valori delle azioni interne ai micropali ai vari Stati Limite (SLU/SLV, SLE-rara, SLE-frequente).

		SLU/S	LV				5	SLE-ra	ra				;	SLE-fre	q		
MAX T	104	kN	prof.	-2.1	m	MAX T	84	kN	prof.	-2.1	m	MAX T	73	kN	prof.	-2.1	m
MAX M ⁺	4	kNm	prof.	-3.5	m	MAX M ⁺	3	kNm	prof.	-3.3	m	MAX M ⁺	3	kNm	prof.	-3.3	m
MAX M	91	kNm	prof.	-1.5	m	MAX M	63	kNm	prof.	-1.5	m	MAX M	63	kNm	prof.	-1.5	m
						δ^{+}	49.3	mm	prof.	2.7	m	δ*	41	mm	prof.	2.7	m
						δ	-0.1	mm	prof.	-2.7	m	δ	0	mm	prof.	-2.5	m

Tabella 11-2: Paratia "lato strada" - Azioni e spostamenti massimi ai diversi Stati Limite

Committente: Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 62

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Di seguito sono riportati i diagrammi degli inviluppi delle azioni interne:

SLU/SLV - Momento flettente

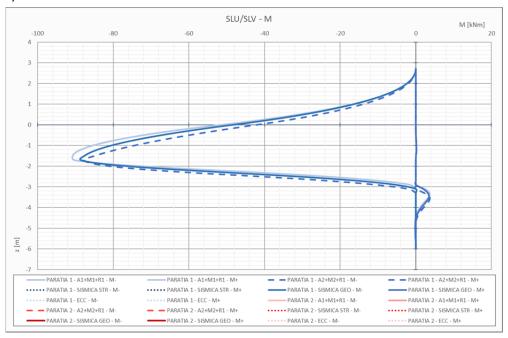


Figura 11-3: Paratia "lato strada" - SLU/SLV - Inviluppo dei momenti flettenti

SLU/SLV - Taglio

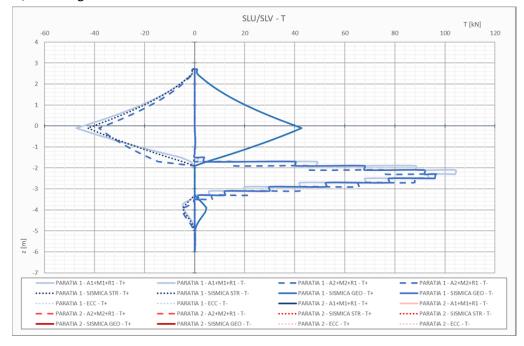


Figura 11-4: Paratia "lato strada" - SLU/SLV - Inviluppo dei tagli

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera" **Progetto Definitivo**

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 63

SLE-rara - Momento flettente

Committente:

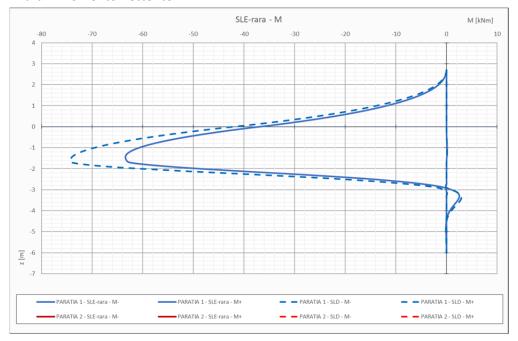


Figura 11-5: Paratia "lato strada" - SLE-rara/SLD - Inviluppo dei momenti flettenti

SLE-rara - Spostamento laterale

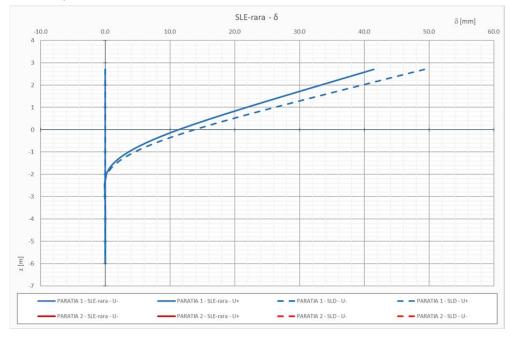


Figura 11-6: Paratia "lato strada" - SLE-rara/SLD - Inviluppo degli spostamenti laterali

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 64

09/2022

Rev. 0

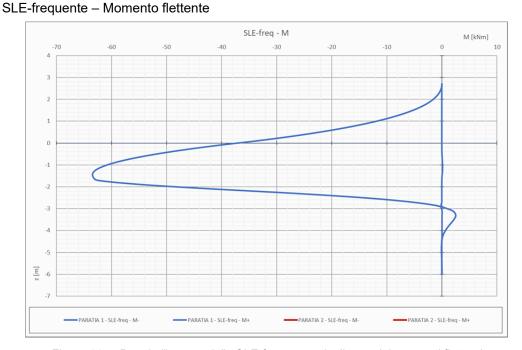


Figura 11-7: Paratia "lato strada" - SLE-frequente - Inviluppo dei momenti flettenti

SLE-frequente - Spostamento laterale

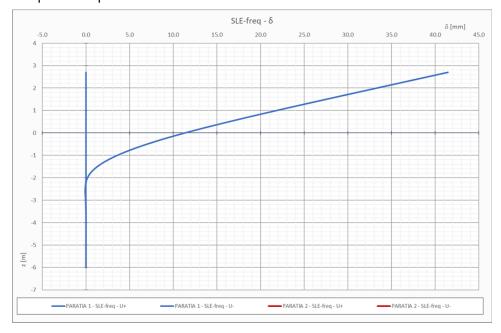


Figura 11-8: Paratia "lato strada" - SLE-frequente - Inviluppo degli spostamenti laterali

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 65

11.3 Verifica del profilo in acciaio dei micropali

Il momento ed il taglio resistente segue quanto prescritto al Par. 4.2.4.1.2 del D.M. 17/01/2018 e Par. 6.2.9 del EN 1993-1-1.

Nel caso in esame si verifica la struttura considerando un comportamento non dissipativo ($\alpha = \beta = 1$, vedasi Cap. 7)

Le azioni massime sulla paratia sono le seguenti:

- $V_{max} = 104 \text{ kN}$
- $M_{max} = 91 \text{ kNm/m}$

A cui corrispondono delle azioni sul singolo micropalo (passo 0,60 m)

- $V_{max} = 62,4 \text{ kN}$
- $M_{max} = 54.6 \text{ kNm/m}$


Utilizzando un profilo tubolare metallico Ø168,3 mm sp. 8 mm si ottengono le seguenti resistenze:

Tipo comb	M _{Ed} [kNm]	V _{Ed} [kN]	M _{ed,palo} [kNm]	V _{ed,palo} [kN]
SLU	91.0	104.0	54.6	62.4

Tipo comb	Tipo profilo	W _{el} [mm ³]	A [mm ²]	M _{Ed} [kNm]	M _{Rd} [kNm]	f _{yk} [MPa]	f _{yd} [MPa]	F _{S,M}
SLU	D 168,3 s 8	205739	4029	54.6	66	355.00	338.10	1.21
			A _v [mm ²]	V _{Ed} [kN]	V _{Rd} [kN]			F _{S,V}
			2565	62.4	477			7.64

Tabella 11-3: Paratia "lato strada" - Resistenza e fattori di sicurezza dei profili metallici

Le verifiche risultano pertanto soddisfatte.

Committente: Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 66

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

11.4 Verifica del paramento

11.4.1 Verifica a flessione

 $M_{Ed} = 91 \text{ kNm}$ $A_S = 10 \text{ Ø } 16 = 4022 \text{ m}^2$ $|M_{Rd}| = 327.8 \text{ kNm} > |M_{Ed}|$

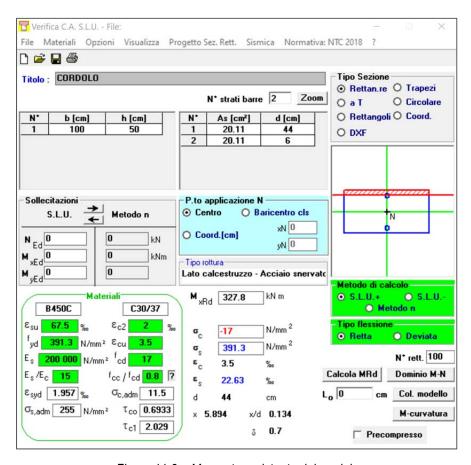


Figura 11-9 – Momento resistente del cordolo

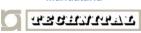
Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 67

11.4.2 Verifica a taglio


 $V_{Ed} = 104 \text{ kN}$

 $A_{Sw} = spilli Ø12 mm maglia 30 x 20 cm$

 $|V_{Rd}| = 263 \text{ kN} > |V_{Ed}|$

Dati di input				LOITOO	ODICE 2	(ON EN	1992 1-1)			
Dati di Iliput										
Rck			N/mm^2 N/mm^2							
fck Valore medio della resistenza a trazione			N/mm^2	= 0.3 x fck	·A (O (O)					
Valore medio della resistenza a trazione Coefficiente sicurezza cls	f _{ctm} =	1.5		= 0.3 X ICH	(*(2/3)					
	γ _c =									
Coefficiente carichi lunga durata	α _{cc} =	0.85					-			-
cd=resistenza di calcolo del cls	fcd =		N/mm^2	= αcc x fc	K / γ _c					
Resitenza caratteristica di snervamento acciaio	fyk =		N/mm^2							
Coefficiente sicurezza acciaio	γ _s =	1.15								-
Snervamento di calcolo acciaio	fyd =		N/mm^2	= fyd / γ _s						
Forza di taglio di calcolo	Vsd =	104				121.2				-
orza assiale di calcolo	Nsd =	100.00	kN	1000						
_arghezza sezione	b _w =									
altezza della sezione	H =	50.00		500	mm					
Copriferro Diametro barre superiori	c =	4.00	mm	(armatı:	compress	-a\				-
Diametro barre superiori Diametro barre inferiori	ф2 =					aj				-
	φ ₁ =		mm	(armatura	tesa)					
Diametro staffe	φst =		mm							-
Numero di barre superiori	N ₂ =	10								-
Numero di barre inferiori	N ₁ =	10		440						-
altezza utile della sezione	d =	44	cm =	440	mm					
Demilizione del coemiciente maggiorativo αC		σ _{cp} <	0.00	=>	αc =	1	membrature	non compr	resse	
ъенниzионе чен соеннсвение пнаддютаціνо α.С	0.00 4.35	=< _{Gcp} <=	4.35 8.70	=>	αc =	1.00 1.25		ļ		
ренниzione чет соеппсiение паддиотаную αс		=< _{Gcp} <	4.35 8.70	=>	αc=	1.00 1.25		ļ		ie .
	4.35	=< _{σcp} < =< _{σcp} <= < σ _{cp} <	4.35 8.70	=> => =>	αc =	1.00 1.25 2.50	membrature	ļ		ie e
Essendo	4.35 8.70 σ _{cp} =	=< _{\sigma_{cp}} < =< _{\sigma_{cp}} < < < \sigma_{cp} < <	4.35 8.70 17.40 N/mm^2	=> => => si ass	αc = αc = αc =	1.00 1.25 2.50	membrature	ļ		ie.
Essendo Resistenza a compressione ridotta	4.35 8.70 σ _{cp} =	=< _{\sigma_{cp}} < =< _{\sigma_{cp}} < < < \sigma_{cp} < <	4.35 8.70 17.40 N/mm^2	=> => => si ass	αc = αc = αc =	1.00 1.25 2.50 αc =	membrature	ļ		ie e
Essendo Resistenza a compressione ridotta	4.35 8.70 σ _{cp} =	$=<_{\sigma_{cp}}<$ $=<_{\sigma_{cp}}<=$ $<_{\sigma_{cp}}<$ 0.00	4.35 8.70 17.40 N/mm^2 N/mm^2	=> => => si ass	αc = αc = αc =	1.00 1.25 2.50	membrature	ļ		SE SE
Essendo Resistenza a compressione ridotta	4.35 8.70 σ _{cp} = f'cd = α =	$=<\sigma_{cp}<$ $=<\sigma_{cp}<=$ $<\sigma_{cp}<$ 0.00 8.70	4.35 8.70 17.40 N/mm^2 N/mm^2	=> => => si ass	αc = αc = αc =	1.00 1.25 2.50 αc =	membrature	ļ		See .
Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio	4.35 8.70 σ _{cp} = f'cd = α =	$=<\sigma_{cp}<$ $=<\sigma_{cp}<=$ $<\sigma_{cp}<$ 0.00 8.70	4.35 8.70 17.40 N/mm^2 N/mm^2	=> => si ass = 0.5 x fcc (45° per fe	αc = αc = αc =	1.00 1.25 2.50 αc =	membrature	ļ		ie e
Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio	4.35 8.70 $\sigma_{cp} =$ $f'cd =$ $\alpha =$ $\alpha =$	$= < \sigma_{cp} <$ $= < \sigma_{cp} <$ $< \sigma_{cp} <$ 0.00 8.70 90 1.57	4.35 8.70 17.40 N/mm^2 N/mm^2 °	=> => si ass = 0.5 x fcc (45° per fe	αc = αc = αc = αc = εume quindi	1.00 1.25 2.50 αc =	membrature	ļ		See
Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio	4.35 8.70 σ _{cp} = fcd = α = α = θ =	$=< \sigma_{Cp} <$ $=< \sigma_{Cp} <=$ $< \sigma_{Cp} <$ 0.00 8.70 90 1.57	4.35 8.70 17.40 N/mm^2 N/mm^2 rad	=> => => si ass = 0.5 x fcc (45° per fe	αc = αc = αc = sume quindi derri piegati	1.00 1.25 2.50 αc =	membrature 1 staffe)	ļ		ee
Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi	4.35 8.70 $\sigma_{cp} =$ $fcd =$ $\alpha =$ $\alpha =$ $\theta =$ $\theta =$	$=< \sigma_{cp} <$ $=< \sigma_{cp} <=$ $< \sigma_{cp} <=$ $< \sigma_{cp} <=$ 0.00 8.70 90 1.57	4.35 8.70 17.40 N/mm^2 N/mm^2 rad	=> => => si ass = 0.5 x fcc (45° per fe	αc = αc = αc = sume quindi derri piegati	1.00 1.25 2.50 αc = e 90° per s	membrature 1	ļ		ie e
Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi	4.35 8.70 $\sigma_{cp} =$ $fcd =$ $\alpha =$ $\alpha =$ $\theta =$ $\theta =$	$=< \sigma_{cp} <$ $=< \sigma_{cp} <=$ $< \sigma_{cp} <=$ $< \sigma_{cp} <=$ 0.00 8.70 90 1.57	4.35 8.70 17.40 N/mm^2 N/mm^2 rad	=> => => si ass = 0.5 x fcc (45° per fe	αc = αc = αc = sume quindi derri piegati	1.00 1.25 2.50 αc = e 90° per s	membrature 1	ļ		e
Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd	4.35 8.70 $\sigma_{cp} =$ $fcd =$ $\alpha =$ $\alpha =$ $\theta =$ $\theta =$	$=< \sigma_{cp} <$ $=< \sigma_{cp} <=$ $< \sigma_{cp} <=$ $< \sigma_{cp} <=$ 0.00 8.70 90 1.57	4.35 8.70 17.40 N/mm^2 N/mm^2 rad	=> => => si ass = 0.5 x fcc (45° per fe	αc = αc = αc = sume quindi derri piegati	1.00 1.25 2.50 αc = e 90° per s	membrature 1	ļ		ie e
Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw/s) x fyd x (cotgα + cotgθ) x sinα Passo delle staffe	4.35 8.70 σ _{cp} = fcd = α = α = θ = Vrcd =	=< \(\sigma_{cp}\) < =< \(\sigma_{cp}\) < = < \(\sigma_{cp}\) < = < < \(\sigma_{cp}\) < = < < \(\sigma_{cp}\) < = < < < < < < < < < < < < < < < < <	4.35 8.70 17.40 N/mm^2 N/mm^2 ° rad ° rad kN	=> => => si ass = 0.5 x fcc (45° per fc	αc = αc = αc = sume quindi derri piegati	1.00 1.25 2.50 αc = e 90° per s	membrature 1	ļ		e
Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw/s) x fyd x (cotga + cotgθ) x sina Passo delle staffe Diametro staffe	4.35 8.70 σ _{op} = fcd = α = θ = θ = Vrcd =	=< σ _{cp} < =< σ _{cp} <= < σ _{cp} <= < σ _{cp} <= < σ _{cp} <= < σ _{cp} <= 0.00 8.70 90 1.57 45 0.79 1722.83	4.35 8.70 17.40 N/mm^2 N/mm^2 rad • rad kN	=> => => si ass = 0.5 x fcc (45° per fc	αc = αc = αc = αc = sume quindid = rri piegati	1.00 1.25 2.50 αc = e 90° per s	membrature 1	ļ		ee
Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw / s) x fyd x (cotgα + cotgθ) x sinα Passo delle staffe Braccia resistenti	4.35 8.70 σ _{cp} = fcd = α = θ = θ = Vrcd = s = φst = n =	=< \sigma_{cp} <= < < < < < < < < < < < < < < < < < <	4.35 8.70 17.40 N/mm^2 N/mm^2 rad orad kN	=> => si ass = 0.5 x fcc (45° per fe (compres	αc = αc = αc = αc = σc = σc = σc = σc =	1.00 1.25 2.50 αc = e 90° per s	membrature 1	ļ		e e
Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw / s) x fyd x (cotgα + cotgθ) x sinα Passo delle staffe Diametro staffe Praccia resistenti Trea armatura a taglio	4.35 8.70 σ _{cp} = fcd = α = α = θ = θ = Vrcd = Vrcd = s = φst = n = Asw =	=< \(\sigma_{cp} < \) =< \(\sigma_{cp} < \) <p>< \(\sigma_{cp} < \) </p> < 0.00 8.70 90 1.57 45 0.79 1722.83 20 12 3 3.39	4.35 8.70 17.40 N/mm^2 N/mm^2 ° rad kN cm mm	=> => => si ass = 0.5 x for (45° per fe (compres OK :	αc =	1.00 1.25 2.50 αc = e 90° per s e 45°)	membrature 1	ļ		ie
Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw / s) x fyd x (cotgα + cotgθ) x sinα Passo delle staffe Diametro staffe Braccia resistenti Area armatura a taglio Percentuale minima di armatura	4.35 8.70 σ _{op} = fcd = α = θ = θ = Vrcd = Vrcd = Asw = ρw,min =	=< \(\sigma_{cp} < \) =< \(\sigma_{cp} < \) <p>< \(\sigma_{cp} < \) </p> < 0.00 8.70 9.00 1.57 45 0.79 1722.83 20 12 3.33 0.0010	4.35 8.70 17.40 N/mm^2 N/mm^2 ° rad kN cm mm	=> => => si ass = 0.5 x fcc (45° per fc	αc =	1.00 1.25 2.50 αc = e 90° per s e 45°)	membrature 1 staffe)	ļ		ie ie
Essendo Resistenza a compressione ridotta Ingolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw / s) x fyd x (cotgα + cotgθ) x sinα Passo delle staffe Diametro staffe Braccia resistenti rea armatura a taglio Percentuale minima di armatura	4.35 8.70 σ _{cp} = fcd = α = α = θ = θ = Vrcd = Vrcd = s = φst = n = Asw =	=< \(\sigma_{cp} < \) =< \(\sigma_{cp} < \) <p>< \(\sigma_{cp} < \) </p> < 0.00 8.70 90 1.57 45 0.79 1722.83 20 12 3 3.39	4.35 8.70 17.40 N/mm^2 N/mm^2 ° rad kN cm mm	=> => => si ass = 0.5 x fcc (45° per fc	αc =	1.00 1.25 2.50 αc = e 90° per s e 45°)	membrature 1 staffe)	ļ		ie
Definizione del coefficiente maggiorativo αc Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw / s) x fyd x (cotgα + cotgθ) x sinα Passo delle staffe Diametro staffe Braccia resistenti Area armatura a taglio Percentuale minima di armatura Area minima di armatura a taglio	4.35 8.70 σ _{op} = fcd = α = θ = θ = Vrcd = Vrcd = Asw = ρw,min =	=< \(\sigma_{cp} < \) =< \(\sigma_{cp} < \) <p>< \(\sigma_{cp} < \) </p> < 0.00 8.70 9.00 1.57 45 0.79 1722.83 20 12 3.33 0.0010	4.35 8.70 17.40 N/mm^2 N/mm^2 ° rad kN cm mm	=> => => si ass = 0.5 x fcc (45° per fc	αc =	1.00 1.25 2.50 αc = e 90° per s e 45°)	membrature 1 staffe)	ļ		

Tabella 11-4 - Verifica a taglio del cordolo

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 68

11.4.3 Verifica a fessurazione

Rev. 0

 $M_{Ed} = 63 \text{ kNm}$

 $N_{Ed} = 0 \; kN$

 $\sigma_s = 79,3 \text{ MPa}$

 $w = 0.05 \text{ mm} \le 0.3 \text{ mm}$

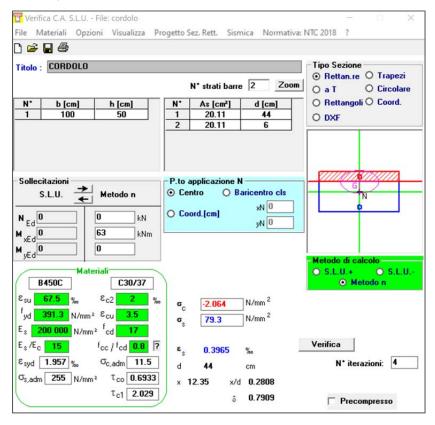


Figura 11-10 - Calcolo delle tensioni in esercizio sul cordolo - SLE frequente

Committente:

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Rev. 0 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 69

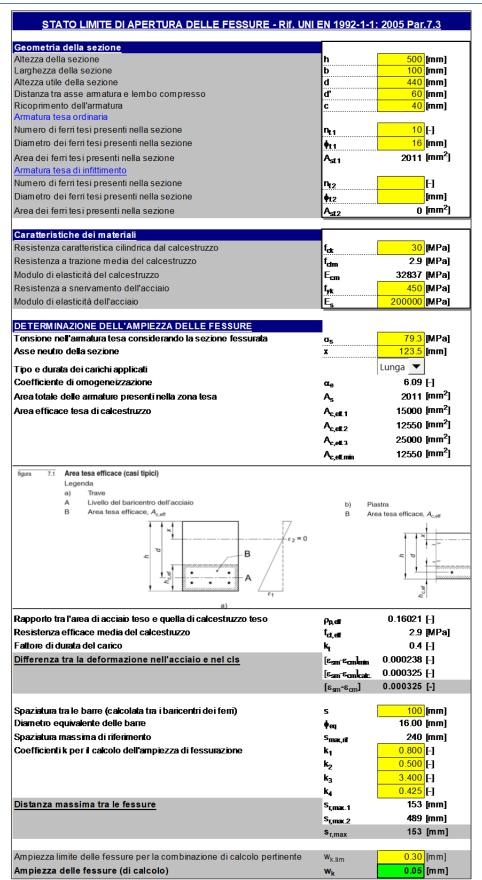


Figura 11-11 – Verifica a fessurazione del cordolo – SLE frequente

Progettista:

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera" **Progetto Definitivo**

Rev. 0

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 70

VERIFICA DI STABILITÀ GLOBALE

L'analisi di stabilità globale è effettuata attraverso il Slope/W, un modulo compreso all'interno del programma GeoStudio 2012.

Nel presente paragrafo si riportano i risultati delle verifiche di stabilità, sia in condizioni statiche che in condizioni simiche, delle scarpate dei rilevati elencati al Capitolo 8.8.

Le verifiche sono state condotte secondo quanto riportato nei parametri precedenti. Il metodo utilizzato nelle analisi è il metodo di Bishop (metodo dei conci).

Nel modello, i terreni sono stati modellati secondo quanto detto al Par. 6.1, mentre le paratie sono state inserite secondo un modello "high strength": in altri termini, si assume che attraverso la paratia non possono innescarsi meccanismi di rottura.

12.1 Paratia "opera di presa"

La geometria utilizzata nel software è mostrata nella seguente figura. Si nota che, al fine di cercare di ottenere un modello che potesse comprendere fenomeni di instabilità più estesi, la scarpata lato sud è stata allungata mantenendo la stessa inclinazione dell'ultimo tratto fino ad una distanza di 33 m dalla paratia.

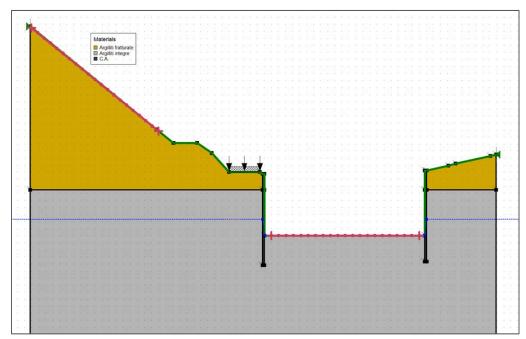


Figura 12-1: Geometria del modello per la valutazione della stabilità globale

Nonostante l'estensione del pendio nel modello, non è stato possibile ricavare una superficie di scorrimento che non intersecasse l'opera di sostegno (vedasi figura sottostante). A causa di ciò e ritenendo che, data la natura dei terreni, un possibile innesco di fenomeni di instabilità sia da considerarsi un'ipotesi remota, si rimanda la verifica ad una fase progettuale successiva, nella quale sarà da integrare e migliorare il rilievo topografico.

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 71

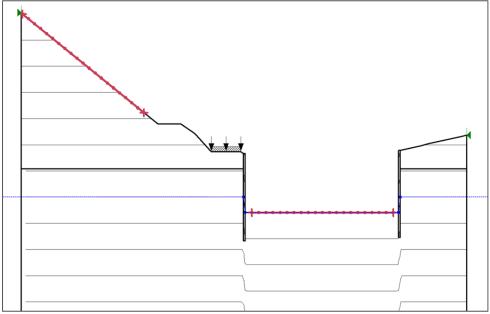


Figura 12-2: Risultati del modello per la valutazione della stabilità globale

Rev. 0

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 72

12.2 Paratia "lato strada"

La geometria utilizzata nel software è mostrata nella seguente figura.

09/2022

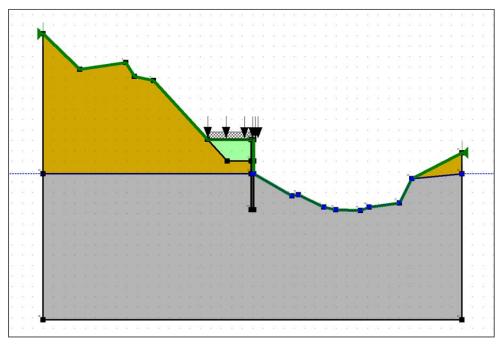


Figura 12-3: Geometria del modello per la valutazione della stabilità globale

Di seguito si riporta una tabella riassuntiva in cui sono mostrati i fattori di sicurezza, espressi come rapporto tra la resistenza e la sollecitazione. Tali valori sono paragonati al fattore parziale delle resistenze definito dalla normativa.

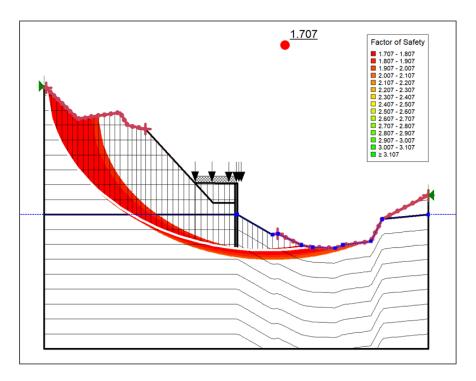
Stato Limite	F_S	γ_R	Esito verifica
SLU	1.707	1.1	Soddisfatta
SLV	2.043	1.2	Soddisfatta

Tabella 12-1: Riassunto verifiche di stabilità globale - Fase definitiva

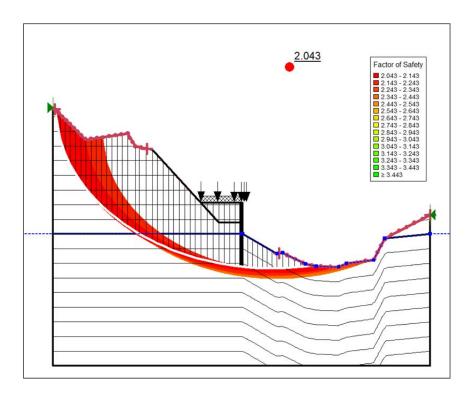
Di seguito sono riportati i risultati delle verifiche.

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"


Progetto Definitivo

Rev. 0 09/2022


Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 73

SLU

SLV

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

DELL'ANALISI

13. ALLEGATO: **PARATIEPLUS**

REPORT

13.1 Paratia "opera di presa"

Report di Calcolo

Nome Progetto: New Project

Autore: Ingegnere

Jobname: \\10.0.10.1\Dati\1 COMMESSE\343-Genova Maltempo\3 - Lavoro\343-Paratia opera di presa\1-Paratie\Sezione 2.pplus

Data: 13/09/2022 15:12:07

Design Section: Base Design Section

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo		:		HORIZONTAL
Quota	:		20	m
OCR		:		1

Tipo **HORIZONTAL** 8.5 Quota **OCR** 1

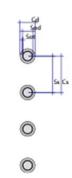
Strato di Terreno γ dry γ sat ø' øcv øp c' Su Modulo Eur Ah Av exp Pa Rur/Rvc Rvc Ku Terreno Elastico

		kN/m`	'kN/m`	, ,	кРа кРа	1	кРа	kPa	кРа
1	AMTa	25	25	28	25	Constant	350000	350000	
0	A B 4T	07	07	20	400	Ctt	4000000	1100000	

Descrizione Pareti

0 Χ m

kPa kN/m³ kN/m³ kN/m³


Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

	Rev. 0	09/2022	Relazione di ca	Icolo: Paratie cor	ntenimento scavo e strada	Pag. 75
Quota	in	alto)	:	11.45	m
Quota	di	fond	do	:	-5.55	m
Muro			di			sinistra

Widio	· ·	41		omotic
Sezione	:	E	Berlinese	Micropali
Area	equivalente	:	0.0174292813073453	m
Inerzia	equivalente	:	0.0001	m⁴/m
Materiale	calcestruzzo		:	C20/25
Tipo	sezione		:	Tangent
Spaziatura	:		0.6	m
Diametro	:		0.25	m
Efficacia		:		1
Materiale	acciaio		:	S355
Sezione		:		CHS168.3*8
Tipo	sezione		:	0
Spaziatura	:		0.6	m
Spessore	:		0.008	m
Diametro	:		0.1683	m

Quota in alto 12.11 m di -4.89 Quota fondo m Muro di destra Sezione Berlinese Micropali Area equivalente 0.0174292813073453 Inerzia equivalente 0.0001 m⁴/m C20/25 Materiale calcestruzzo Tipo sezione Tangent 0.6 Spaziatura m Diametro 0.25 m Efficacia Materiale acciaio S355

22.795

Mandataria

sezione

Sezione Tipo

Spaziatura

Spessore

Χ

0.6

0.008

m

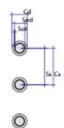
CHS168.3*8

0

m

m

Comune di Genova


"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

m

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 76

Diametro 0.1683

Fasi di Calcolo

IC

Scavo

					avu
sinistra		di			Muro
m	11.45	:	nte	mon	Lato
m	11.45	:	е	valle	Lato
destra		di			Muro
m	12.11	:	nte	mon	Lato
m	12.11	:	е	valle	Lato
(Irregolare)	sinistra	di	scavo	di	Linea

(-30;19.77)(-15.31;19.77) (-12.93;17.22) (-9.52;17.2) (-7.45;15.37)(-5.02;11.83)(-0.63;11.83)

(0;11.45)centrale Linea di (Irregolare) scavo

(0;11.45)(0.74; 10.98)(2.95;9.9)(3.74; 8.88)(4.14; 8.64)(8.45; 4.45)(8.64; 3.56)

(9.78; 3.45)(12.4; 3.33)(13.28; 3.73)(13.99;4.68)

(15.32; 6.12)(16.455;7.15715517241379)

(17.64; 8.24)(22.08;11.72)

> Mandataria

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 77

					(22.58;12.05)	
					(22.795;12.11)	
(Irregolare)	destra	di	scavo	di	Linea	
, ,					(22.795;12.11)	
					(26.1;12.99)	
					(27.14;13.38)	
					(32.09;14.82)	
					(32.91;15.13)	
					(45;15.13)	
					(43, 13. 13)	
acquifera					1	Falda
m	-5	:	sinistra	di	Falda	
m	-5	:	destra	di	Falda	
m	-5	:	-sinistra	centrale-	Falda	

centrale-destra

Paratia

Falda

Scavo

sınıstra		aı			Muro
m	11.45	:	nte	mon	Lato
m	11.45	:	le	valle	Lato
destra		di			Muro
m	12.11	:	nte	mon	Lato
m	12.11	:	le	valle	Lato
(Irregolare)	sinistra	di	scavo	di	Linea (-30;19.77)

(-15.31;19.77)(-12.93;17.22)(-9.52;17.2)(-7.45;15.37)(-5.02;11.83)(-0.63;11.83)(0;11.45)

> (0.74;10.98)(2.95; 9.9)

Linea di centrale (Irregolare) scavo (0;11.45)

(3.74; 8.88)(4.14; 8.64)(8.45; 4.45)(8.64; 3.56)(9.78; 3.45)(12.4; 3.33)(13.28; 3.73)(13.99; 4.68)(15.32;6.12) (16.455;7.15715517241379) (17.64; 8.24)(22.08;11.72)(22.58; 12.05)(22.795;12.11)

Linea di (Irregolare) di scavo destra (22.795;12.11)

(26.1;12.99)(27.14;13.38)(32.09;14.82) (32.91;15.13)

(45;15.13)

Falda acquifera

-5

m

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

	Rev. 0	09/2022	Relazione di	calcolo: Paratie contenim	ento scavo e strada	Pag. 78
Falda	di		sinistra	:	-5	m
Falda	di		destra	:	-5	m
Falda	CE	entrale-sinistra		:	-5	m
Falda	Ce	entrale-destra		:	-5	m

Elementi					strutturali
Paratia		:			WallElement
X		:	0		m
Quota	in	alto	:	11.45	m
Quota	di	fondo	:	-5.55	m
Sezione		:	Berlinese		Micropali
Paratia		:			WallElement
X		:	22.795		m
Quota	in	alto	:	12.11	m
Quota	di	fondo	:	-4.89	m
Sezione		:	Berlinese		Micropali

Scavo 3m

Scavo

Muro		di		sinistra
Lato	monte	:	11.45	m
Lato	valle	:	8.44	m
Muro		di		destra
Lato	monte	:	12.11	m
Lato	valle	:	9.1	m

Linea	dı	scavo	dı	sınıstra	(Irregolare)
(-30;19.77)					
(-15.31;19.77)					
(-12.93;17.22)					

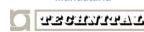
(-9.52;17.2) (-7.45; 15.37)(-5.02;11.83)(-0.63;11.83)(0;11.45)

Linea di scavo centrale (Irregolare)

(0;8.44)(4.3; 8.44)(6.295; 6.545) (8.45; 4.45)(8.64; 3.56)(9.78; 3.45)(12.4; 3.33)

(13.28; 3.73)(13.99; 4.68)(15.32; 6.12)

(16.455;7.15715517241379)


(17.64; 8.24)(18.32; 8.77)(18.745;9.1) (22.795;9.1)

Linea di destra (Irregolare) di scavo

(22.795;12.11) (26.1;12.99) (27.14;13.38)(32.09;14.82) (32.91;15.13) (45;15.13)

Falda acquifera

Falda di sinistra -5 m di -5 Falda destra m Falda centrale-sinistra m

Comune di Genova

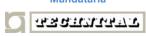
"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

00/2022 Relazione di calcolo: Paratie contenimento scavo e strada

	Rev. 0 09/2	2022 Relazio	ne di calcolo: P	aratie contenime	ento scavo e str	ada Pag. 79
Falda	centrale-c	destra	:		-5	m
Carichi						
Carico	lineare	in	superficie	;	:	SurfaceSurcharge
X	iniziale		:		-5.02	m
X	finale		:		-0.63	m
Pressione		iziale	:		20	kPa
Pressione	fi	nale	:		20	kPa
Elementi						strutturali
Paratia			:			WallElement
X		:		0		m
Quota	in	alto		:	11.45	m
Quota	di	fondo		:	-5.55	m
Sezione		:		Berlinese		Micropali
Paratia		•	:			WallElement
X			•	22.795		m
Quota	in	alto			12.11	m
Quota	di	fondo		•	-4.89	m
Sezione		:		Berlinese		Micropali
Tiranti -						
Scavo			.r:			-1-1-4
Muro			di		44.45	sinistra
Lato	monte)	:		11.45	m
Lato	valle		. :		8.44	m
Muro			di		10.11	destra
Lato	monte		:		12.11	m
Lato	valle		;		9.1	m
Linea (-30;19.77) (-15.31;19. (-12.93;17. (-9.52;17.2 (-7.45;15.3 (-5.02;11.8 (-0.63;11.8	77) 22)) 7) 3)	scavo	di	ę	sinistra	(Irregolare)
(0;11.45) Linea (0;8.44) (4.3;8.44) (6.295;6.54 (8.45;4.45) (8.64;3.56) (9.78;3.45) (12.4;3.33) (13.28;3.73	,	sca	avo	centra	ale	(Irregolare)

(13.28; 3.73)(13.99; 4.68)(15.32;6.12) (16.455;7.15715517241379) (17.64;8.24)

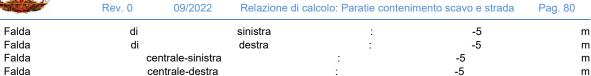

(18.745; 9.1)(22.795;9.1) Linea (Irregolare) scavo di destra (22.795;12.11)

(26.1;12.99) (27.14;13.38) (32.09;14.82)(32.91;15.13)

(18.32;8.77)

(45;15.13)

Falda acquifera


Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

SurfaceSurcharge

m m

Falda	di	destra	:	-5	m
Falda	centrale-sinis	stra	:	-5	m
Falda	centrale-des	tra	:	-5	m

Carichi				
Carico	lineare	in	superficie	:
Χ	inizial	iniziale		-5.02
V	£		_	0.00

X	iniziale	:	-5.02	m
X	finale	:	-0.63	m
Pressione	iniziale	:	20	kPa
Pressione	finale	:	20	kPa

Elementi					strutturali
Paratia		:			WallElement
X		:	0		m
Quota	in	alto	:	11.45	m
Quota	di	fondo	:	-5.55	m
Sezione		:	Berlinese		Micropali
Paratia		:			WallElement
X		:	22.795		m
Quota	in	alto	:	12.11	m

Quota	di	fondo	:	-4.89	m
Sezione	:		Berlinese		Micropali
Tirante		:			Triante_2.5m_sx
X	:		0		m
Z	:		8.94		m
Lunghezza	bulbo		•	9	m
Diametro	bulbo	:		0.15	m
Lunghezza	libera		• •	8.5	m
Spaziatura	orizzontale		:	3	m
Precarico	:		200)	kN

Opaziatara	OnELOnia	•	•		•	111
Precarico		:		200		kN
Angolo	:			15		۰
Sezione			:			Tirante
Tipo	di	barre	:		Barre	trefoli
Numero	di		barre		:	3
Diametro		:		0.01331		m
Area	•			0.000417		m^2

Tirante	:			Tirante 2.5m dx
X	:	22.7	95	m
Z	:	9.5		m
Lunghezza	bulbo	:	9	m
Diametro	bulbo		0.15	m
Lunghezza	libera	:	8.5	m
Spaziatura	orizzontale	:	3	m
Precarico	:		200	kN

Angolo		:		165	0
Sezione			:		Tirante
Tipo	di	barre	:	Barre	trefoli
Numero		di	barre	:	3
Diametro		•	0	0.01331	m
Area		:	0.000	0417	m^2

Scavo 8m

Scavo				
Muro		di		sinistra
Lato	monte	:	11.45	m
Lato	valle	:	3.45	m
Muro		di		destra
Lato	monte	:	12.11	m
Lato	valle	:	3.43	m

Linea	di	scavo	di	sinistra	(Irregolare)
/ 00 /0 ==					, ,

(-30;19.77) (-15.31;19.77)

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 81

					3
(-12.93;17.22) (-9.52;17.2) (-7.45;15.37) (-5.02;11.83) (-0.63;11.83) (0;11.45)					
Linea	di	scavo		centrale	(Irregolare)
(0;3.45) (9.78;3.45) (12.4;3.33) (12.62;3.43) (22.795;3.43)	u.	35475		constact	(megolalo)
Linea	di	scavo	di	destra	(Irregolare)
(22.795;12.11) (26.1;12.99) (27.14;13.38) (32.09;14.82) (32.91;15.13) (45;15.13)					

Falda					acquitera
Falda	di	sinistra	:	-5	m
Falda	di	destra	:	-5	m
Falda	centrale-	sinistra	:	-5	m
Falda	centrale-	destra	:	-5	m

Carichi					
Carico	lineare	in	superficie	:	SurfaceSurcharge
X	iniziale		:	-5.02	m
X	finale		:	-0.63	m
Dragaigna	:	ni - iolo		20	l/Do

	^	IIIIaic	•	-0.03	111
	Pressione	iniziale	:	20	kPa
	Pressione	finale	:	20	kPa
Elementi					strutturali

Struttura					CITICITA
WallElemer			:		Paratia
r		0	:		X
45 r	11.45	:	alto	in	Quota
.55 r	-5.55	:	fondo	di	Quota
Micropa		Berlinese	:		Sezione
WallElemer			:		Paratia
r		22.795	:	:	X
11 r	12.11	:	alto	in	Quota
.89 r	-4.89	:	fondo	di	Quota
Micropa		Berlinese	:		Sezione
Triante_2.5m_s			:		Tirante
r		0	:		X
r		8.94	:		Z

X		:	0			m
Z		:		8.94		m
Lunghezza	bı	ulbo	:		9	m
Diametro	bulb	0	:	0.1	.5	m
Lunghezza	lib	era	:	8	.5	m
Spaziatura	orizzontale		:		3	m
Precarico		:		200		kN
Angolo		:		15		۰
Sezione			:			Tirante
Tipo	di	barre	:	В	arre	trefoli
Numero	d	li	harre			3

Diametro	:		0.01331	m
Area	:		0.000417	m^2
Tirante		:		Tirante_2.5m_dx
X	:		22.795	m
Z	:		9.5	m
Lunghezza	bulbo	:	9	m
Diametro	bulbo	-	0.15	m

Diametro	bulbo	:	0.15	m
Lunghezza	libera	:	8.5	m
Spaziatura	orizzontale	:	3	m
Precarico	:		200	kN
Angolo	:		165	۰

Area

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

0.000417

m^2

strutturali

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 82 Sezione Tirante Tipo di Barre trefoli barre Numero di 3 barre Diametro 0.01331 m

			scavo

ca	

Muro		di		sinistra
Lato	monte	:	11.45	m
Lato	valle	:	0	m
Muro		di		destra
Lato	monte	:	12.11	m
Lato	valle	:	0	m

Linea	di	scavo	di	sinistra	(Irregolare)
(-30;19.77))				
(-15.31;19.	77)				
(-12 93 17	22)				

(-9.52;17.2) (-7.45; 15.37)(-5.02;11.83)(-0.63;11.83)(0;11.45)

Linea di centrale (Orizzontale) scavo Linea di (Irregolare) di scavo destra

(22.795;12.11) (26.1;12.99) (27.14;13.38) (32.09;14.82)(32.91;15.13)

(45;15.13)

Falda acquifera

Falda di sinistra -5 m di -5 Falda destra m -5 -5 Falda centrale-sinistra m Falda centrale-destra m

Carichi

Carico	lineare	in	superficie	:	SurfaceSurcharge
Χ	inizia	le	:	-5.02	m
Χ	finale	Э	:	-0.63	m
Pressione		iniziale	:	20	kPa
Pressione		finale	:	20	kPa

Elementi

Paratia		:			WallElement
Χ		:	0		m
Quota	in	alto	:	11.45	m
Quota	di	fondo	:	-5.55	m
Sezione		:	Berlinese		Micropali
Paratia		:			WallElement
Χ		:	22.795		m
Quota	in	alto	:	12.11	m
Quota	di	fondo	:	-4.89	m
0			D. allia a a a		N 4! I!

Sezione Berlinese Micropali Tirante Triante_2.5m_sx X Z 0 m 8.94 m Lunghezza bulbo 9 m 0.15 Diametro bulbo m Lunghezza libera 8.5 m

Mandataria **Progettista:**

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0	09/2022	Relazione di calcolo: Paratie contenimento scavo e strada	Pag. 83

Spaziatura orizzontale : 3 Precarico : 200 Angolo : 15 Sezione : Barre Tipo di barre : Numero di barre : Diametro : 0.01331 . Area : 0.000417 . Tirante : 22.795 . . Z : 9.5 . . Lunghezza bulbo : 9.5 . Lunghezza libera : 0.15 . Spaziatura orizzontale : 3 . Precarico : 200 . . Angolo : 200 . . Sezione : . . . Tira Angolo : 	
Angolo : 15 Sezione : Tira Tipo di barre : Barre tr Numero di barre : 0.01331	Spaziatura
Sezione : Tirr Tipo di barre : Barre tr Numero di barre : 0.01331 Area : 0.000417 Tirante Tirante_2.5m Tirante_2.5m X 22.795 Tirante_2.5m X 22.795 Tirante_2.5m Y	Precarico
Sezione : Tirante Tipo di barre : Barre tr Numero di barre : 0.01331 .	Angolo
Numero di barre : 0.01331 Area : 0.000417 Tirante : 0.000417 Tirante_2.5m X : 22.795 22.795 Z : 9.5 Lunghezza bulbo : 9 Diametro bulbo : 0.15 Lunghezza libera : 8.5 Spaziatura orizzontale : 3 Precarico : 200 Angolo : 165 Sezione : Barre tr Tipo di barre : Barre tr Numero di barre : 0.01331	
Diametro : 0.01331 Area : 0.000417 Tirante : 22.795 Z : 9.5 Lunghezza bulbo : 9 Diametro bulbo : 0.15 Lunghezza libera : 8.5 Spaziatura orizzontale : 3 Precarico : 200 Angolo : 165 Sezione : Barre tr Numero di barre : Barre tr Diametro : 0.01331 : .	Tipo
Area : 0.000417 Tirante : 22.795 Z : 9.5 Lunghezza bulbo : 9 Diametro bulbo : 0.15 Lunghezza libera : 8.5 Spaziatura orizzontale : 3 Precarico : 200 Angolo : 165 Sezione : Barre tr Numero di barre : Barre tr Diametro : 0.01331 : .	Numero
Tirante : Z2.795 Z Z : 9.5 S	Diametro
X : 22.795 Z : 9.5 Lunghezza bulbo : 9 Diametro bulbo : 0.15 Lunghezza libera : 8.5 Spaziatura orizzontale : 3 Precarico : 200 Angolo : 165 Sezione : Tira Tipo di barre : Barre tr Numero di barre : 0.01331	Area
Z : 9.5 Lunghezza bulbo : 9 Diametro bulbo : 0.15 Lunghezza libera : 8.5 Spaziatura orizzontale : 3 Precarico : 200 Angolo : 165 Sezione : Tira Tipo di barre : Barre tr Numero di barre : 0.01331	Tirante
Lunghezza bulbo : 9 Diametro bulbo : 0.15 Lunghezza libera : 8.5 Spaziatura orizzontale : 3 Precarico : 200 Angolo : 165 Sezione : Tirr Tipo di barre : Barre tr Numero di barre : 0.01331	Χ
Diametro bulbo : 0.15 Lunghezza libera : 8.5 Spaziatura orizzontale : 3 Precarico : 200 Angolo : 165 Sezione : Tira Tipo di barre : Barre tr Numero di barre : 0.01331	Z
Lunghezza libera : 8.5 Spaziatura orizzontale : 3 Precarico : 200 Angolo : 165 Sezione : Tirr Tipo di barre : Barre tr Numero di barre : 0.01331	Lunghezza
Spaziatura orizzontale : 3 Precarico : 200 Angolo : 165 Sezione : Tira Tipo di barre : Barre tr Numero di barre : 0.01331	Diametro
Precarico : 200 Angolo : 165 Sezione : Tiro Tipo di barre : Barre tr Numero di barre : 0.01331	Lunghezza
Angolo : 165 Sezione : Tiro Tipo di barre : Barre tr Numero di barre : 0.01331	Spaziatura
Sezione : Tir Tipo di barre : Barre tr Numero di barre : Diametro : 0.01331	Precarico
Tipo di barre : Barre tr Numero di barre : Diametro : 0.01331	Angolo
Numero di barre : Diametro : 0.01331	Sezione
Diametro : 0.01331	Tipo
	Numero
Area : 0.000417	Diametro
	Area
zamento falda	zamento falda
70	
Muro di sin	Muro

Innalza

(-5.02;11.83)

(45;15.13)

Muro		di		sinistra
Lato	monte	:	11.45	m
Lato	valle	:	0	m
Muro		di		destra
Lato	monte	:	12.11	m
Lato	valle	:	0	m

Linea	di	scavo	di	sinistra	(Irregolare)
(-30;19.77)					
(-15.31;19.77)					
(-12.93;17.22)					
(-9.52;17.2)					
(-7.45,15.37)					

(-0.63;11.83) (0;11.45)Linea di (Orizzontale) centrale scavo Linea di scavo di destra (Irregolare)

(22.795;12.11) (26.1;12.99) (27.14,13.38) (32.09; 14.82)(32.91;15.13)

Falda acquifera di 3 Falda sinistra m Falda di destra 3 m 0 0 centrale-sinistra Falda m Falda centrale-destra m

Carichi

Carico	lineare	in	superficie	:	SurfaceSurcharge
Χ	inizial	е	:	-5.02	m
Χ	finale	•	:	-0.63	m
Pressione		iniziale	:	20	kPa
Pressione		finale	<u>:</u>	20	kPa

X Z

Lunghezza

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente

Polcevera"

Progetto Definitivo

0

8.94

m

m

m

2	Flogetto Dellintivo					
	Rev. 0	09/2022	Relazione di ca	Relazione di calcolo: Paratie contenimento scavo e strada		
Elementi						strutturali
Paratia			:			WallElement
X		:		0		m
Quota	in		alto	:	11.45	m
Quota	di		fondo	:	-5.55	m
Sezione		:		Berlinese		Micropali
Paratia			:			WallElement
X		:		22.795		m
Quota	in		alto	:	12.11	m
Quota	di		fondo	:	-4.89	m
Sezione		:		Berlinese		Micropali
Tirante			:			Triante 2.5m sx

bulbo

Diametro	bulbo)	:	0.15	m
Lunghezza	libe	ra	:	8.5	m
Spaziatura	orizz	ontale	:	3	m
Precarico		:		200	kN
Angolo		:		15	0
Sezione			:		Tirante
Tipo	di	barre	:	Barre	trefoli
Numero	di		barre	:	3
Diametro		:		0.01331	
Area		:	(0.000417	m^2
irante		:			Tirante 2.5m dx
				~~ -~-	

Tirante	:			Tirante_2.5m_dx
X	:	22.	795	m
Z	:	9	9.5	m
Lunghezza	bulbo	:	9	m
Diametro	bulbo	:	0.15	m
Lunghezza	libera	:	8.5	m
Spaziatura	orizzontale	:	3	m
Precarico	:		200	kN
Angolo	:		165	o
Sezione		:		Tirante

Tipo	di	barre	:	Barre	trefoli
Numero	di		barre	:	3
Diametro		:	(0.01331	m
Area		:	0.00	0417	m^2


Sisma

Scavo

0					
Muro		(ib		sinistra
Lato	monte		:	11.45	m
Lato	valle		:	0	m
Muro			di		destra
Lato	monte		:	12.11	m
Lato	valle		:	0	m
Linea (-30;19.77) (-15.31;19.77) (-12.93;17.22) (-9.52;17.2) (-7.45;15.37) (-5.02;11.83) (-0.63;11.83)	di	scavo	di	sinistra	(Irregolare)
(0;11.45) Linea	di	scavo		centrale	(Orizzontale)
0 Linea	di	scavo	di	destra	m (Irregolare)
(22.795;12.11)		30473	ui	destra	(in egolare)

(26.1;12.99) (27.14;13.38)

(32.09;14.82) (32.91;15.13)

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 85

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

(45;15.13)

Falda Falda Falda Falda Falda Falda		le-sinistra _{lle-} destra	sinistra destra	: :	: :	3 3 0 0	acquifera m m m m
Carichi							
Carico X	lineare inizia	in Jo		superficie		: -5.02	SurfaceSurcharge
X	finale			:		-0.63	m m
Pressione	man	iniziale				20	kPa
Pressione		finale		:		20	kPa
Elementi							strutturali
Paratia			:				WallElement
X		•			0		m
Quota	in		alto		:	11.45	m
Quota	di		fondo		:	-5.55	m
Sezione		:			Berlinese		Micropali
Paratia X		_	:		22.795		WallElement
A Quota	in	•	alto		. 22.795	12.11	m m
Quota	di		fondo		•	-4.89	m
Sezione	ui	:	101140		Berlinese	4.00	Micropali
Tirante		·	:		20		Triante_2.5m_sx
X		•			0		m
Z		;			8.94		m
Lunghezza		bulbo		:		9	m
Diametro		bulbo		:		0.15	m
Lunghezza		libera		:		8.5	m
Spaziatura		orizzontal	е	:	000	3	m
Precarico					200		kN °
Angolo Sezione		-		_	15		Tirante
Tipo	di		barre	•		Barre	trefoli
Numero	ui.	di	barre	barre	•		3
Diametro		u.	:	Dane	0.0133	1	m
Area		:			0.000417		m^2
Tirante			:				Tirante_2.5m_dx
X		:			22.795		m
Z		:			9.5		m
Lunghezza		bulbo		:		9	m
Diametro		bulbo		:		0.15	m
Lunghezza Spaziatura		libera	_	: .		8.5	m
Spaziatura Precarico		orizzontal	.	-	200	3	m kN
Angolo					165		KIN o
Sezione		•		:	.00		Tirante
Tipo	di		barre	-	:	Barre	trefoli
, Numero		di		barre		:	3
Diametro			:		0.0133	1	m
Area		:			0.000417		m^2

Descrizione Coefficienti Design Assumption

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 86

Nome	Carichi Permanenti Sfavorevoli (F_dead_lo ad_unfavo ur)	ti Favorevol i	Sfavorevol i (F_live_loa d_unfavou	Variabili Favorevo li (F_live_l	Sismic o (F_seis m_loa	ioni Acqu a Lato	oni Acqua Lato Valle (F_Wa terRe	Perman enti Destabi lizzanti (F_UPL	Perma nenti Stabili zzanti (F_UP	Variabil i Destabi lizzanti (F_UPL	Carichi Perman enti Destabi lizzanti (F_HYD _GDSta b)	Perma nenti Stabiliz zanti (F_HY	Variabil i Destabi lizzanti (F_HYD
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1	0	1	1	1	1	1	1	1	1
NTC2018: A1+M1+R 1 (R3 per tiranti)		1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
NTC2018: A2+M2+R 1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
NTC2018: SISMICA STR	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1

Nome	Parziale s tan(ø') (F_Fr)	uParziale su ((F_eff_cohe)	c'Parziale su S (F_Su)	uParziale su qı (F_qu)	uParziale su peso specifico (F_gamma)
Simbolo	γφ	γс	γcu	γqu	ΥΥ
Nominal	1	1	1	1	1
NTC2018: SL (Rara/Frequente/Quasi Permanente		1	1	1	1
NTC2018: A1+M1+R1 (R3 petiranti)	er1	1	1	1	1
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1
NTC2018: SISMICA STR	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1

Nome	Parziale resistenza terren (es. Kp) (F_Soil_Res_walls)			za Parziale elementi ei strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
NTC2018: (Rara/Freguente/Quasi	SLE1	1	1	1

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 87

0.000				
Nome	Parziale resistenza terreno (es. Kp) (F_Soil_Res_walls)	Parziale resistenza Tiranti permanent (F_Anch_P)		Parziale elementi istrutturali (F_wall)
Simbolo	γRe	үар	γat	
Permanente)				
NTC2018: A1+M1+R1 (R3 petiranti)	r1	1.2	1.1	1
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

Riepilogo Stage / Design Assumption per Inviluppo

Design Assum	ption		IC Parati	a Scavo 3m	Tirant	ti Scavo 8m	Fondo scavo	Innalzamento falda	Sisma
NTC2018: Permanente)	SLE	(Rara/Frequente/Quas	si						
NTC2018: A1+N	/11+R1 (R3	per tiranti)	VV	V	V	V	V	V	V
NTC2018: A2+N	//2+R1		VV	V	V	V	V	V	V
NTC2018: SISM	IICA STR		VV	V	V	V	V	V	V
NTC2018: SISM	IICA GEO		VV	V	V	٧	V	V	V

Muro: WallElement

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento WallElement

Selected Design Assumptions Inviluppi: Momento

•	• •	
Z (m)	Lato sinistro (kN*m/m) Lato destro (kN*m/m)
11.45	0	0
11.25	0.282	0
11.05	1.095	0
10.85	2.405	0
10.65	4.171	0
10.45	6.422	0
10.25	9.18	0
10.05	12.449	0

16.434

21.259

26.944

33.363

40.187

0

0 0

0

0

9.85

9.65

9.45

9.25

9.05

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente

Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 88

Selected Design Assumption	s Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m	n) Lato destro (kN*m/m)
8.94	44.041	0
8.74	37.916	0
8.54	32.105	0
8.34	26.702	0.95
8.14	21.538	1.74
7.94	16.611	1.671
7.74	11.921	1.263
7.54	7.974	0.8
7.34	7.034	0.836
7.14	6.094	0.872
6.94	5.154	4.462
6.74	4.214	7.964
6.54	3.275	11.228
6.34	2.335	14.255
6.14	1.395	17.044
5.94	0.772	19.596
5.74	0.245	21.91
5.54	0.014	23.986
5.34	0.014	25.825
5.14	0.021	27.426
4.94	0.02	28.79
4.74	0.017	29.916
4.54	0.012	30.805
4.34	0.008	31.456
4.14	0.005	31.869
3.94	0.004	32.045
3.74	0.003	31.984
3.54	0.003	31.685
3.34	0.79	31.148
3.14	1.591	30.373
2.94	1.845	29.362
2.74	1.751	28.093
2.54	1.475	26.506
2.34	1.136	24.535
2.14	0.807	22.12
1.94	0.53	19.196

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente

Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 89

Selected Design Assumption	s Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m	n) Lato destro (kN*m/m)
1.74	0.318	16.54
1.54	0.169	15.758
1.34	0.074	14.302
1.14	0.021	12.048
0.94	5.254	8.87
0.74	12.55	4.643
0.54	20.796	1.507
0.34	30.055	1.305
0.14	40.388	0.335
-0.06	51.823	0
-0.26	53.356	0
-0.46	48.33	0
-0.66	39.206	0
-0.86	28.483	0
-1.06	18.556	0
-1.26	10.556	0
-1.46	4.779	0
-1.66	1.043	0
-1.86	0.156	1.058
-2.06	0.035	1.987
-2.26	0.012	2.163
-2.46	0.011	1.919
-2.66	0.01	1.494
-2.86	0.009	1.04
-3.06	0.009	0.64
-3.26	0.014	0.331
-3.46	0.025	0.116
-3.66	0.033	0
-3.86	0.083	0
-4.06	0.105	0
-4.26	0.099	0
-4.46	0.078	0
-4.66	0.052	0
-4.86	0.032	0
-5.06	0.021	0.001

0.002

0.009

-5.26

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 90

Selected Design Assumptions Inviluppi: Momento Muro: WallElement

Z (m) Lato sinistro (kN*m/m) Lato destro (kN*m/m)

-5.46 0.001

-5.55 0 0

Tabella Inviluppi Momento WallElement

Selected Design	Assumptions inviluppi: Momento	Muro: WallElement

Z (m)	Lato sinistro (kN*m/m) Lato destro (kN*m/m			
12.11	0	0		
11.91	0	0.02		
11.71	0	0.083		
11.51	0	0.205		
11.31	0	0.423		
11.11	0	0.746		
10.91	0	1.191		
10.71	0	1.77		
10.51	0	2.631		
10.31	0	4.187		
10.11	0	6.858		
9.91	0	10.969		
9.71	0	16.801		
9.51	0	24.503		
9.5	0	24.937		
9.3	0	17.779		
9.1	0	12.475		
8.9	0.75	8.834		
8.7	2.506	6.549		
8.5	3.528	5.264		
8.3	3.382	4.608		
8.1	3.237	3.952		
7.9	3.091	3.296		
7.7	2.945	2.671		
7.5	2.8	2.06		
7.3	2.654	1.449		
7.1	2.508	0.838		
6.9	2.362	0.228		
6.7	2.217	0.081		
6.5	2.071	0.046		

Progettista:

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente

Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 91

Selected Design Assumption	s Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m	n) Lato destro (kN*m/m)
6.3	1.952	0.021
6.1	2.608	0.006
5.9	3.264	0
5.7	3.92	0
5.5	4.576	0.004
5.3	5.232	0.008
5.1	5.888	0.009
4.9	6.543	0.007
4.7	7.199	0.006
4.5	7.855	0.004
4.3	8.511	0.003
4.1	9.167	0.002
3.9	9.823	0.002
3.7	10.479	0.002
3.5	11.135	0.492
3.3	11.791	1.883
3.1	12.447	2.471
2.9	13.103	2.496
2.7	13.719	2.195
2.5	14.216	1.751
2.3	14.514	1.287
2.1	14.533	0.874
1.9	14.194	0.544
1.7	13.418	0.302
1.5	12.124	0.141
1.3	10.491	0.044
1.1	8.364	0
0.9	5.452	0
0.7	1.639	0
0.5	0.51	4.891
0.3	0.342	10.96
0.1	0	18.103
-0.1	0	26.401
-0.3	0	28.182
-0.5	0	25.161

19.709

0

-0.7

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 92

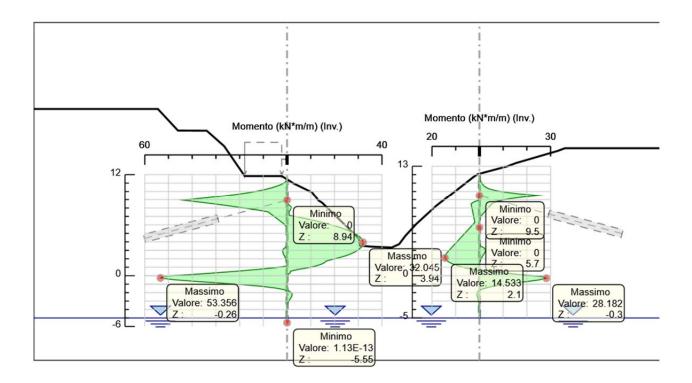
Selected Design As	Selected Design Assumptions Inviluppi: Momento Muro: WallElement				
Z (m)	Lato sinistro (kN*m/n	Lato sinistro (kN*m/m) Lato destro (kN*m/m)			
-0.9	0	13.925			
-1.1	0	8.846			
-1.3	0	4.85			
-1.5	0	2.037			
-1.7	0	0.286			
-1.9	0.761	0.085			
-2.1	1.1	0.015			
-2.3	1.095	0.014			
-2.5	0.918	0.013			
-2.7	0.687	0.012			
-2.9	0.456	0.011			
-3.1	0.262	0.01			
-3.3	0.117	0.017			
-3.5	0.023	0.028			
-3.7	0	0.041			
-3.9	0	0.059			
-4.1	0	0.056			
-4.3	0	0.042			
-4.5	0	0.023			
-4.7	0	0.007			

0

0

Grafico Inviluppi Momento

-4.89



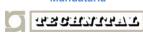
Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 93

Momento


Tabella Inviluppi Taglio WallElement

Selected Design Assumptions Inviluppi: Taglio **Muro: WallElement**

Lato sinistro (kN/m) Lato destro (kN/m) **Z** (m)

11.45 1.409 0

11.25 4.066 0

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente

Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 94

Selected Design Assumption	s Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m	n) Lato destro (kN/m)
11.05	6.551	0
10.85	8.829	0
10.65	11.257	0
10.45	13.789	0
10.25	16.347	0
10.05	19.922	0
9.85	24.125	0
9.65	28.427	0
9.45	32.093	0
9.25	34.12	0
9.05	40.734	0
8.94	40.734	41.444
8.74	10.668	41.444
8.54	14.626	29.68
8.34	14.626	27.012
8.14	3.932	25.824
7.94	2.039	24.636
7.74	2.318	23.448
7.54	2.318	22.26
7.34	1.921	21.073
7.14	1.308	19.885
6.94	0.747	18.697
6.74	0.346	17.509
6.54	0.345	16.321
6.34	0.478	15.134
6.14	0.478	13.946
5.94	0.434	12.758
5.74	0.319	11.57
5.54	0.199	10.382
5.34	0.101	9.194
5.14	0.035	8.007
4.94	0	6.819
4.74	0.001	5.631
4.54	0.002	4.7
4.34	0.002	4.7
4.14	0.001	4.7

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente

Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 95

Ite	V. 0 09/2022	Relazione di calco
Selected Design Assumptions	Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
3.94	0.904	4.7
3.74	3.502	4.7
3.54	7.553	4.7
3.34	7.553	4.7
3.14	5.059	4.7
2.94	6.342	4.7
2.74	7.939	4.605
2.54	9.851	4.196
2.34	12.078	3.472
2.14	14.62	2.432
1.94	17.476	1.667
1.74	20.648	1.062
1.54	24.135	0.744
1.34	27.936	0.474
1.14	32.052	0.267
0.94	36.484	0.179
0.74	41.23	0.179
0.54	46.291	0.179
0.34	51.667	0
0.14	57.177	0
-0.06	57.177	0
-0.26	15.071	25.128
-0.46	0.922	45.622
-0.66	0.008	53.615
-0.86	0.001	53.615
-1.06	0	49.635
-1.26	0	40.003
-1.46	0	28.882
-1.66	0	18.679
-1.86	0	10.508
-2.06	0	4.644
-2.26	1.219	0.882
-2.46	2.125	0.088
-2.66	2.271	0.004
-2.86	2.271	0.004
-3.06	1.998	0.003

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 96

Selected Design Assumptions	Muro: WallElement	
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
-3.26	1.548	0.002
-3.46	1.074	0.001
-3.66	0.658	0.001
-3.86	0.336	0
-4.06	0.111	0.038
-4.26	0.001	0.104
-4.46	0	0.13
-4.66	0	0.13
-4.86	0	0.121
-5.06	0	0.086
-5.26	0.008	0.059
-5.46	0.008	0.042
-5.55	0.003	0.012

Tabella Inviluppi Taglio WallElement

Selected Design Assumptions	s Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m) Lato destro (kN/m)
12.11	0	0.098
11.91	0	0.316
11.71	0	0.649
11.51	0	1.087
11.31	0	1.616
11.11	0	2.233
10.91	0	2.999
10.71	0	4.438
10.51	0	7.923
10.31	0	13.358
10.11	0	20.557
9.91	0	29.159
9.71	0	38.511
9.51	0	43.305
9.5	41.412	43.305
9.3	41.412	3.9
9.1	31.933	3.9
8.9	22.79	2.143
8.7	14.327	3.085

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente

Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 97

Ne	V. 0 03/2022	Trelazione di calcolo. I al
Selected Design Assumptions	s Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m)) Lato destro (kN/m)
8.5	7.062	5.741
8.3	3.28	5.741
8.1	3.578	4.172
7.9	3.965	2.987
7.7	3.965	1.799
7.5	3.307	0.872
7.3	3.28	0.729
7.1	3.28	0.729
6.9	3.28	0.729
6.7	3.28	0.729
6.5	3.28	0.729
6.3	3.28	0.729
6.1	3.28	0.729
5.9	3.28	0.729
5.7	3.28	0.729
5.5	3.28	0.729
5.3	3.28	0.729
5.1	3.28	0.729
4.9	3.28	0.729
4.7	3.28	0.729
4.5	3.28	0.729
4.3	3.28	0.729
4.1	3.28	0.729
3.9	3.28	0.729
3.7	3.28	2.804
3.5	3.28	6.957
3.3	3.28	6.957
3.1	3.28	3.025
2.9	3.28	0.372
2.7	3.081	0.219
2.5	2.484	0.219
2.3	2.319	0.219
2.1	2.065	1.694
1.9	1.651	3.883
1.7	1.207	6.469
1.5	0.806	9.454

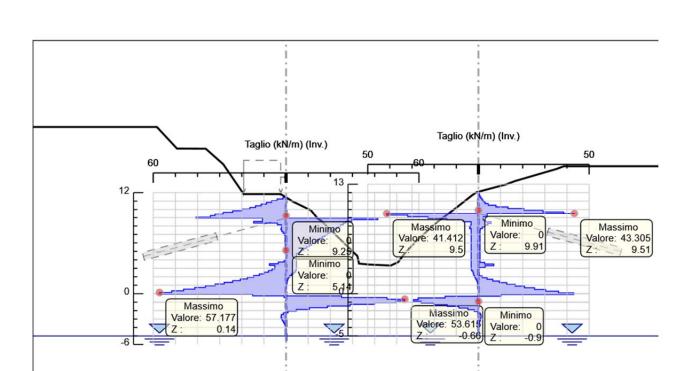
"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 98

110	00/2022	T (Cluziono di odio
Selected Design Assumptions	s Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m) Lato destro (kN/m)
1.3	0.484	12.836
1.1	0.249	16.617
0.9	0.096	20.795
0.7	0.006	25.371
0.5	0	30.345
0.3	0	36.173
0.1	0	43.065
-0.1	0	43.065
-0.3	15.102	10.201
-0.5	27.264	0.019
-0.7	29.351	0.008
-0.9	29.351	0
-1.1	25.881	0
-1.3	20.066	0
-1.5	14.067	0
-1.7	8.823	0
-1.9	4.74	0
-2.1	1.892	0.023
-2.3	0.202	0.903
-2.5	0.01	1.213
-2.7	0.005	1.213
-2.9	0.004	1.18
-3.1	0.004	0.974
-3.3	0.004	0.72
-3.5	0.005	0.472
-3.7	0.006	0.263
-3.9	0.024	0.105
-4.1	0.073	0
-4.3	0.093	0
-4.5	0.093	0
-4.7	0.08	0
-4.89	0.037	0

Grafico Inviluppi Taglio


Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 99

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Taglio

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption Stage Muro Lato Inviluppo Spinta Reale Efficace / Spinta Passiva

%

NTC2018: A2+M2+R1IC Left Wall LEFT 4.7

NTC2018: A2+M2+R1 Innalzamento falda Left Wall RIGHT 17.97

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 100

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Design Assumption Stage Muro Lato Inviluppo Spinta Reale Efficace / Spinta Passiva

NTC2018: A2+M2+R1 Innalzamento falda Right wall LEFT 18.86

NTC2018: A2+M2+R1IC Right wall RIGHT 5.38

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption Stage Inviluppo Spinta Reale Efficace / Spinta Attiva Muro

%

NTC2018: A2+M2+R1Fondo scavo Left Wall LEFT 169.88

NTC2018: A2+M2+R1IC Left Wall RIGHT 2399.14

NTC2018: A2+M2+R1IC Right wall LEFT 2470.12 NTC2018: A2+M2+R1 Fondo scavo Right wall RIGHT 209.18

> Mandataria

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

13.2 Paratia "lato strada"

Rev. 0

Committente:

Report di Calcolo

Nome Progetto: New Project

Autore: Ingegnere

Jobname: \\10.0.10.1\Dati\1 COMMESSE\343-Genova Maltempo\3 - Lavoro\343-Paratia opera di presa\1-Paratie\Paratia lato

strada.pplus

Data: 13/09/2022 13:41:06

Design Section: Base Design Section

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo	:	POLYLINE
Punti		
(-20;15)		
(-20;15)		
(20;15)		
(25;-30)		
(-25;-30)		
OCR	:	1

Tipo **LENS**

(-4.3;2.7)(0;2.7)(0;0)(-2.4;0)(-4.3; 2.7)

OCR

Tipo **POLYLINE**

Punti (-20;-1.6)(20; -1.6)(25; -30)(-25;-30)

1

Pag. 101

Comune di Genova

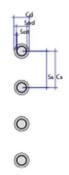
"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 102

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

OCR


Strato Terreno	di Terren	oγ dry	γsa	t ø'øc	vøpc	' Su	Modulo Elastico	EuEvc	Eur	Ah Av exp Pa	Rur/Rvc Rvc Ku	Kvc	Kur
		kN/m	ı³ kN/n	n³°°	° k	Pa kPa	a	kPa	kPa	kPa	kPa kN/ı	m³ kN/m	³kN/m³
1	AMTa	25	25	28	2	5	Constant	350000	350000				
2	RIP	25	25	28	2	5	Constant	350000	350000				
3	AMT	27	27	38	1	00	Constant	1200000	1200000)			

Descrizione Pareti

S

Χ		:	0		m
Quota	in	alto	:	2.7	m
Quota	di	fondo	:	-6	m
Muro		di			sinistra

Sezione		:		Berlinese
Area	equivalente	:	0.0174292813073453	m
Inerzia	equivalente	:	0.0001	m⁴/m
Materiale	calcestru	ZZO	:	C20/25
Tipo	sezione		:	Tangent
Spaziatura	:		0.6	m
Diametro	:		0.25	m
Efficacia		:		1
Materiale	acciaio)	:	S355
Sezione		:		CHS168.3*8
Tipo	sezion	ie	:	0
Spaziatura	:		0.6	m
Spessore	:		0.008	m
Diametro	:		0.1683	m

Fasi di Calcolo

Progettista:

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 103

IC

Scavo

Muro			di		sinistra
Lato	mor	nte	:	0	m
Lato	vall	е	:	0	m
Linea (-20;11.5) (-16.5;11.5) (-12.1;12.4) (-11.3;10.6) (-9.5;10.1) (-8.3;10) (-2.3;2.7) (0;0)	di	scavo	di	sinistra	(Irregolare)
Linea (0;0) (3.8;-4.4) (4.4;-4.2) (6.8;-5.8) (8;-6.1) (10.3;-6.2) (11.1;-5.8) (14;-5.3) (15.2;-2.2) (20;1.1)	di	scavo	di	destra	(Irregolare)

Scavo

Scavo

Muro	di			sinistra	
Lato mo		onte	:	0	m
Lato	va	lle	:	0	m
Linea (-20;11.5) (-16.5;11.5) (-12.1;12.4) (-11.3;10.6) (-9.5;10.1) (-2.4;0) (0;0)	di	scavo	di	sinistra	(Irregolare)
Linea (0;0) (3.8;-4.4) (4.4;-4.2) (6.8;-5.8) (8;-6.1) (10.3;-6.2) (11.1;-5.8) (14;-5.3) (15.2;-2.2) (20;1.1)	di	scavo	di	destra	(Irregolare)

Paratia

Scavo

Comune di Genova

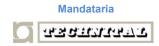
"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente

Polcevera" Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 104

sinistra		di			Muro
m	0	:	monte	mo	Lato
m	0	:	valle		Lato
(Irregolare)	sinistra	di	scavo	di	Linea (-20;11.5) (-16.5;11.5) (-12.1;12.4) (-11.3;10.6) (-9.5;10.1) (-2.4;0)
(Irregolare)	destra	di	scavo	di	(0;0) Linea (0;0) (3.8;-4.4) (4.4;-4.2) (6.8;-5.8) (8;-6.1) (10.3;-6.2) (11.1;-5.8) (14;-5.3) (15.2;-2.2) (20;1.1)

Carichi


Carico	lineare	in	superficie	:	Cantiere	1
Χ	iniz	riale	:		-2.4	m
Χ	fin	ale	:		0	m
Pressione		iniziale	:		20	kPa
Pressione		finale	:		20	kPa

Elementi					strutturali
Paratia		:			WallElement
X		:	0		m
Quota	in	alto	:	2.7	m
Quota	di	fondo	:	-6	m
Sezione					Berlinese

Riempimento

Scavo

Muro Lato Lato		nonte valle	di : :	2.7 0	sinistra m m
Linea (-20;11.5) (-16.5;11.5) (-12.1;12.4) (-11.3;10.6) (-9.5;10.1) (-4.3;2.7) (0;2.7)	di	scavo	di	sinistra	(Irregolare)
(5,2.7) Linea (0;0) (3.8;-4.4) (4.4;-4.2) (6.8;-5.8) (8;-6.1) (10.3;-6.2) (11.1;-5.8) (14;-5.3) (15.2;-2.2) (20;1.1)	di	scavo	di	destra	(Irregolare)

Pressione

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

20

kPa

	Rev. 0	Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e s			strada Pag. 105
Carichi					
Carico	lineare	in	superficie	:	SurfaceSurcharge
X	ii	niziale	:	-4.3	m
X		finale	:	0	m
Pressione		iniziale	:	20	kPa

finale

Elementi					strutturali
Paratia		:			WallElement
X		:	0		m
Quota	in	alto	:	2.7	m
Quota	di	fondo	:	-6	m
Sezione		:			Berlinese

Sisma

S	ca	VΩ

sinistra		di			cavo Muro
m	2.7	:	onte	moi	Lato
m	0		alle		Lato
****	Ü	•	allo	Val	Lato
(Irregolare)	sinistra	di	scavo	di	Linea (-20;11.5) (-16.5;11.5) (-12.1;12.4) (-11.3;10.6) (-9.5;10.1) (-4.3;2.7)
(Irragalara)	doatra	di	22212	di	(0;2.7)
(Irregolare)	destra	ui	scavo	ui	Linea (0;0) (3.8;-4.4) (4.4;-4.2) (6.8;-5.8) (8;-6.1) (10.3;-6.2) (11.1;-5.8) (14;-5.3) (15.2;-2.2)

Carico	lineare	in	superficie	:	SurfaceSurcharge
Χ	inizia	le	:	-4.3	m
Χ	final	е	:	0	m
Pressione	iniziale		:	20	kPa
Pressione		finale	:	20	kPa

Elementi					strutturali
Paratia		:			WallElement
X		:		0	m
Quota	in	alto	:	2.7	m
Quota	di	fondo	:	-6	m
Sezione			:		Berlinese

Descrizione Coefficienti Design Assumption

(20;1.1)

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 106

415		IXCV. C	001	2022	rtciazio	nc are	aicoio.	i aratic c	Officiality	cinto scar	70 C Strac	10 10	ag. 100
Nome	Carichi Permanenti Sfavorevoli (F_dead_lo ad_unfavo ur)	ti Favorevol i	Sfavorevol i (F_live_loa d_unfavou	li (F_live_l	Sismic o (F_seis m_loa	ioni Acqu a Lato	oni Acqua Lato Valle (F_Wa terRe	Perman enti Destabi lizzanti (F_UPL	Perma nenti Stabili zzanti (F_UP	Variabil i Destabi lizzanti (F_UPL	Perman enti Destabi lizzanti (F_HYD	Perma nenti Stabiliz zanti (F_HY	Variabil i Destabi
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018: SLE (Rara/Freduente/Quasi Permanente)	1	1	1	1	0	1	1	1	1	1	1	1	1
NTC2018: A1+M1+R 1 (R3 per tiranti)		1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
NTC2018: A2+M2+R 1		1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
NTC2018: SISMICA STR	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1

Nome	Parziale s tan(ø') (F_Fr)	uParziale su d (F_eff_cohe)	c'Parziale su Sı (F_Su)	ı Parziale su qı (F_qu)	Parziale su peso specifico (F_gamma)
Simbolo	γφ	ус	γcu	γqu	γγ
Nominal	1	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi Permanente		1	1	1	1
NTC2018: A1+M1+R1 (R3 pe tiranti)	er1	1	1	1	1
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1
NTC2018: SISMICA STR	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1

Nome	Parziale resistenza terrer (es. Kp) (F_Soil_Res_walls)			e resistenza Parziale elementi temporanei strutturali	
		(F_Anch_P)	(F_Anch_T)	(F_wall)	
Simbolo	γRe	үар	γat		
Nominal	1	1	1	1	
NTC2018: (Rara/Frequente/Quasi	SLE1	1	1	1	

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 107

Nome	Parziale resistenza terreno (es. Kp) (F Soil Res walls)	Parziale resistenza Tiranti permanent		resistenza Parziale elementi temporanei strutturali		
	(es. rcp) (i _coii_ites_waiis)	(F_Anch_P)	(F_Anch_T)	(F_wall)		
Simbolo	γRe	үар	γat			
Permanente)						
NTC2018: A1+M1+R1 (R3 pe tiranti)	r1	1.2	1.1	1		
NTC2018: A2+M2+R1	1	1.2	1.1	1		
NTC2018: SISMICA STR	1	1.2	1.1	1		
NTC2018: SISMICA GEO	1	1.2	1.1	1		

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption

IC Scavo Paratia Riempimento Sisma

NTC2018: SLE (Rara/Frequente/Quasi Permanente) V V

NTC2018: A1+M1+R1 (R3 per tiranti)

NTC2018: A2+M2+R1

NTC2018: SISMICA STR

NTC2018: SISMICA GEO

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento WallElement

Selected Design Assumptions Inviluppi: Momento Muro: WallElement

Z (m)	Lato sinistro (kN*m/m) Lato destro (kN*m/m		
2.7	0	0	
2.5	0.133	0	
2.3	0.495	0	
2.1	1.139	0	
1.9	2.108	0	
1.7	3.453	0	
1.5	5.224	0	
1.3	7.464	0	
1.1	10.225	0	
0.9	13.556	0	
0.7	17.501	0	
0.5	22.11	0	
0.3	27.433	0	
0.1	33.515	0	

Comune di Genova

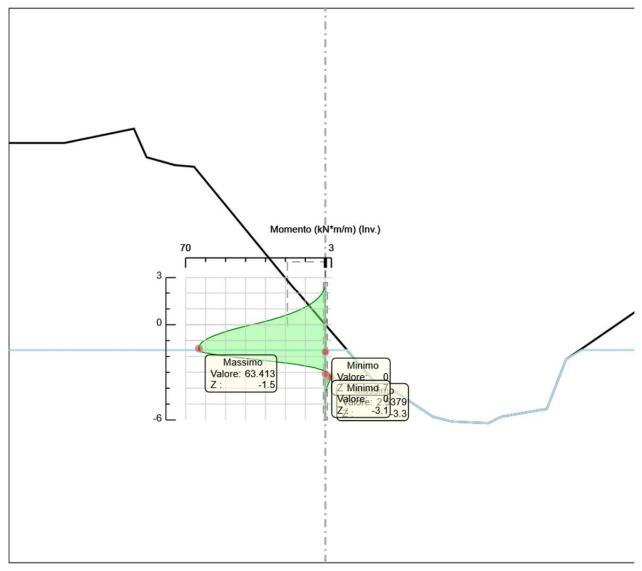
"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 108

Selected Design Assumption	s Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m) Lato destro (kN*m/m)
-0.1	40.405	0
-0.3	46.487	0.006
-0.5	51.714	0.029
-0.7	56.04	0.067
-0.9	59.419	0.106
-1.1	61.805	0.133
-1.3	63.152	0.124
-1.5	63.413	0.037
-1.7	62.65	0
-1.9	54.62	0
-2.1	41.745	0
-2.3	27.051	0
-2.5	14.493	0
-2.7	5.613	0.006
-2.9	0.4	0.008
-3.1	0	1.959
-3.3	0	2.538
-3.5	0	2.21
-3.7	0.002	1.564
-3.9	0.002	0.925
-4.1	0.002	0.437
-4.3	0.001	0.124
-4.5	0.04	0
-4.7	0.102	0
-4.9	0.105	0
-5.1	0.082	0
-5.3	0.052	0
-5.5	0.027	0
-5.7	0.009	0
-5.9	0.001	0
-6	0	0

Grafico Inviluppi Momento


Comune di Genova

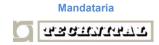
"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 109

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Momento


Tabella Inviluppi Taglio WallElement

Selected Design Assumptions Inviluppi: Taglio **Muro: WallElement**

Z (m) Lato sinistro (kN/m) Lato destro (kN/m)

2.7 0.666 0

2.5 1.808 0

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente

Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 110

Selected Design Assumptions	s Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m) Lato destro (kN/m)
2.3	3.224	0
2.1	4.845	0
1.9	6.723	0
1.7	8.852	0
1.5	11.204	0
1.3	13.805	0
1.1	16.651	0
0.9	19.727	0
0.7	23.047	0
0.5	26.612	0
0.3	30.409	0
0.1	34.449	0
-0.1	34.449	0.032
-0.3	30.411	0.115
-0.5	26.135	0.189
-0.7	21.63	0.194
-0.9	16.898	0.194
-1.1	11.929	0.135
-1.3	6.732	0
-1.5	1.306	3.815
-1.7	1.068	40.152
-1.9	0.032	64.376
-2.1	0	73.467
-2.3	0	73.467
-2.5	0	62.793
-2.7	0	44.399
-2.9	0.014	26.066
-3.1	0.017	11.794
-3.3	1.637	2.894
-3.5	3.235	0
-3.7	3.235	0
-3.9	3.191	0.001
-4.1	2.444	0.001
-4.3	1.561	0.001
-4.5	0.82	0.001
-4.7	0.31	0.001

Comune di Genova

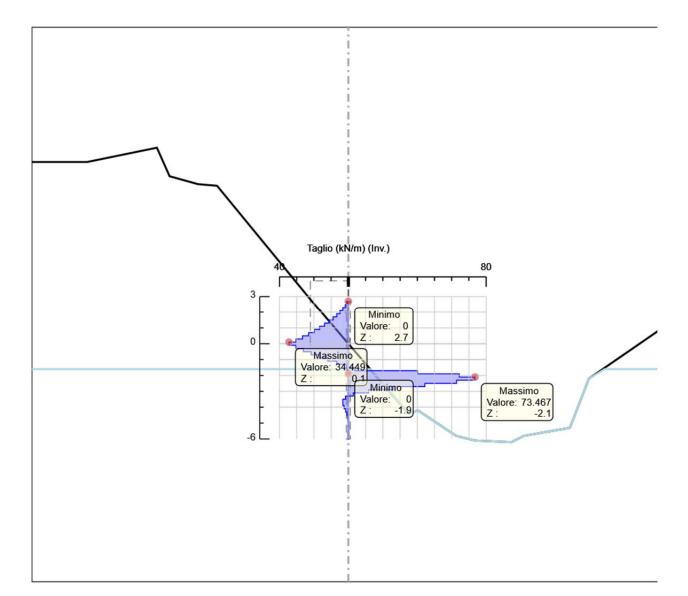

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 111

Selected Design Assumptions	Muro: WallElement			
Z (m)	Lato sinistro (kN/m) Lato destro (kN/r			
-4.9	0.016	0.116		
-5.1	0	0.148		
-5.3	0	0.148		
-5.5	0	0.127		
-5.7	0	0.086		
-5.9	0	0.042		
-6	0	0.01		

Grafico Inviluppi Taglio


Progettista:

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 112

Taglio

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro	Lato	Inviluppo Passiva	Spinta	Reale	Efficace	I	Spinta
				%					

NTC2018: LEFT 2.31 SLE (Rara/Frequente/Quasi Riempimento Left Permanente) Wall

Mandataria

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 113

Design Assumption Stage Lato Inviluppo Spinta Reale Efficace / Spinta Muro Passiva

NTC2018: SLE (Rara/Frequente/Quasi Riempimento Left **RIGHT 27.05**

Permanente)

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption Muro Lato Inviluppo Spinta Reale Efficace / Spinta Attiva Stage

%

NTC2018: SLE (Rara/Frequente/Quasi Permanente) Riempimento Left Wall LEFT 352.22

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

14. ALLEGATO 2: REPORT DELLE VERIFICHE STABILITÀ GLOBALE

14.1 Paratia "lato strada"

14.1.1 Caso statico

Lato strada - SG Statico

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Created By: Luca Piantanida

Last Edited By: Luca Piantanida

Revision Number: 380

Date: 15/09/2022 Time: 14:44:45

Tool Version: 8.15.1.11236

File Name: Stab glob - lato strada.gsz

Directory: \\10.0.10.1\Dati\1 COMMESSE\343-Genova Maltempo\3 - Lavoro\343-Paratia opera di presa\3-Geostudio\

Last Solved Date: 15/09/2022 Last Solved Time: 14:44:52

Project Settings

Length(L) Units: Meters Time(t) Units: Seconds

Force(F) Units: Kilonewtons

Pressure(p) Units: kPa

Strength Units: kPa

Unit Weight of Water: 9.807 kN/m3

View: 2D

Element Thickness: 1

Analysis Settings

Lato strada - SG Statico

Kind: SLOPE/W Method: Bishop

Settings

PWP Conditions Source: Piezometric Line

Apply Phreatic Correction: No

Use Staged Rapid Drawdown: No

Limit State Design Approach: NTC2018-A2+M2+R2 Statico

Slip Surface

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 115

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 100

Resisting Side Maximum Convex Angle: 1 °

Driving Side Maximum Convex Angle: 5 °

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant

Advanced

Number of Slices: 50

F of S Tolerance: 0.001

Minimum Slip Surface Depth: 1 m

Materials

Argilliti fratturate

Model: Mohr-Coulomb

Unit Weight: 21 kN/m³

Cohesion': 20 kPa

Phi': 28 °

Phi-B: 0°

Pore Water Pressure

Piezometric Line: 1

Argilliti integre

Model: Mohr-Coulomb

Unit Weight: 26.5 kN/m³

Cohesion': 100 kPa

Phi': 32 °

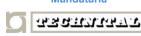
Phi-B: 0°

Pore Water Pressure

Piezometric Line: 1

C.A.

Model: High Strength


Unit Weight: 25 kN/m³

Pore Water Pressure

Piezometric Line: 1

Rinterro

Model: Mohr-Coulomb

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 116

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Unit Weight: 18 kN/m³

Cohesion': 0 kPa

Phi': 30 °

Phi-B: 0°

Pore Water Pressure

Piezometric Line: 1

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (-19.805274; 15.75) m Left-Zone Right Coordinate: (-9.4674; 10.1052) m

Left-Zone Increment: 20 Right Projection: Range

Right-Zone Left Coordinate: (4.319852; -4.238733) m

Right-Zone Right Coordinate: (20; 1.0552) m

Right-Zone Increment: 20 Radius Increments: 10 Slip Surface Limits

Left Coordinate: (-20; 16) m

Right Coordinate: (20; 1.0552) m

Piezometric Lines Piezometric Line 1

Coordinates

	X (m)	Y (m)
Coordinate 1	-50	-1.6
Coordinate 2	0	-1.6
Coordinate 3	0.13	-1.6
Coordinate 4	3.765	-4.3578
Coordinate 5	4.3708	-4.2278
Coordinate 6	6.8159	-5.807
Coordinate 7	7.9748	-6.0811
Coordinate 8	10.3144	-6.2
Coordinate 9	11.1154	-5.7649
Coordinate 10	14.016	-5.2529
Coordinate 11	15.2235	-2.2058
Coordinate 12	20	-1.6
Coordinate 13	50	-1.6

Surcharge Loads

Comune di Genova Committente:

Rev. 0

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 117

Surcharge Load 1

Surcharge (Unit Weight): 20 kN/m³

Direction: Vertical Mode: Variable

Coordinates

X (m)	Y (m)
-4.3	3.7
0	3.7

Points

	X (m)	Y (m)
Point 1	-16.5	11.5065
Point 2	-12.1042	12.3713
Point 3	-11.2949	10.5983
Point 4	-9.4674	10.1052
Point 5	-4.3254	2.7369
Point 6	-2.4153	0
Point 7	-0.12	0
Point 8	-0.12	2.7
Point 9	-0.12	-1.6
Point 10	-0.12	-6.1
Point 11	0.13	-1.6
Point 12	0.13	2.7
Point 13	0.13	0
Point 14	0.13	-6.1
Point 15	3.765	-4.3578
Point 16	4.3708	-4.2278
Point 17	6.8159	-5.807
Point 18	7.9748	-6.0811
Point 19	10.3144	-6.2
Point 20	11.1154	-5.7649
Point 21	14.016	-5.2529
Point 22	15.2235	-2.2058
Point 23	20	1.0552
Point 24	-20	-1.6

Mandataria 4344444

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 118

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Point 25	20	-1.6
Point 26	-20	-20
Point 27	20	-20
Point 28	-20	16

Regions

	Material	Points	Area (m²)
Region 1	Argilliti integre	26;24;9;10;14;11;15;16;17;18;19;20;21;22;25;27	685.35
Region 2	Argilliti fratturate	24;28;1;2;3;4;5;6;7;9	196.27
Region 3	Argilliti fratturate	22;23;25	6.3413
Region 4	Rinterro	6;5;8;7	8.8183
Region 5	C.A.	8;12;13;11;14;10;9;7	2.2

Current Slip Surface

Slip Surface: 55

F of S: 1.707

Volume: 202.01763 m³ Weight: 4 486.5296 kN

Resisting Moment: 87 272.169 kN-m Activating Moment: 51 131.089 kN-m

F of S Rank (Analysis): 1 of 4 851 slip surfaces

F of S Rank (Query): 1 of 212 slip surfaces

Exit: (7.7112479; -6.0187653) m Entry: (-19.805274; 15.75) m

Radius: 23.110697 m

Center: (3.2873197; 16.664558) m

Slip Slices

	X (m)	Y (m)	PWP (kPa)	Base Normal Stress (kPa)	Frictional Strength (kPa)	Cohesive Strength (kPa)
Slice 1	-19.529835	13.658976	-149.64477	-11.989631	-5.1	16
Slice 2	-18.978956	10.562825	-119.28083	27.469762	11.684745	16
Slice 3	-18.428077	8.7974132	-101.96743	49.176948	20.918278	16
Slice 4	-17.877198	7.4073942	-88.335515	64.841616	27.581519	16
Slice 5	-17.326319	6.2333509	-76.821672	76.71527	32.632186	16
Slice 6	-16.77544	5.2067433	-66.753731	85.850097	36.517845	16
Slice 7	-16.225262	4.2911895	-57.774896	98.980148	42.102943	16
Slice 8	-15.675788	3.4632838	-49.655625	116.97728	49.758339	16
Slice 9	-15.126312	2.7062051	-42.230953	134.0512	57.021032	16

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 119

Slice 10	-14.576838	2.0088915	-35.392399	150.31399	63.938693	16
Slice 11	-14.027363	1.3631217	-29.059335	165.85404	70.548927	16
Slice 12	-13.477888	0.76258484	-23.169869	180.7426	76.882036	16
Slice 13	-12.928413	0.20230989	-17.675253	195.03809	82.962873	16
Slice 14	-12.378937	- 0.32170117	-12.536277	208.78914	88.812122	16
Slice 15	-11.69955	- 0.91996241	-6.6691286	208.27848	88.594907	16
Slice 16	-11.083872	-1.432418	-1.6434767	203.69762	86.646358	16
Slice 17	-10.638603	-1.7768851	1.734712	181.90124	90.064435	80
Slice 18	-10.170122	-2.1215684	5.1150213	191.03799	92.942055	80
Slice 19	-9.7016406	-2.4485527	8.3217567	199.68976	95.663998	80
Slice 20	-9.1817333	-2.7908241	11.678411	202.85292	95.567273	80
Slice 21	-8.6104	-3.145478	15.156502	200.27075	92.53778	80
Slice 22	-8.0390667	-3.4776827	18.414435	196.84954	89.1989	80
Slice 23	-7.4677333	-3.7885338	21.462951	192.62953	85.5654	80
Slice 24	-6.8964	-4.0789923	24.311477	187.64556	81.649967	80
Slice 25	-6.3250667	-4.3499048	26.968317	181.92775	77.46352	80
Slice 26	-5.7537333	-4.6020192	29.440802	175.50223	73.015448	80
Slice 27	-5.1824	-4.8359973	31.735426	168.39161	68.313808	80
Slice 28	-4.6110667	-5.052426	33.857941	160.6154	63.365481	80
Slice 29	-4.3127	-5.1607443	34.920219	156.64575	60.850041	80
Slice 30	-3.9858833	-5.2693267	35.985087	182.18029	73.082318	80
Slice 31	-3.35765	-5.4677964	37.93148	187.31517	74.67623	80
Slice	-2.7294167	-5.6468144	39.687109	191.9454	76.113229	80

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente

Polcevera"

Progetto Definitivo

Rev. 0 09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 120

32						
Slice 33	-2.1283875	-5.8006888	41.196155	197.07504	77.923149	80
Slice 34	-1.5545625	-5.9313349	42.477402	202.77829	80.133689	80
Slice 35	-0.9807375	-6.0467335	43.609115	208.11739	82.236942	80
Slice 36	-0.4069125	-6.147116	44.593566	213.09763	84.23442	80
Slice 37	-0.06	-6.2023629	45.135373	233.76627	94.295736	80
Slice 38	0.065	-6.2202983	45.311265	209.80621	82.230281	80
Slice 39	0.38964286	-6.2622664	43.791008	109.95779	33.076475	80
Slice 40	0.90892857	-6.3219471	40.512619	102.73674	31.105559	80
Slice 41	1.4282143	-6.369768	37.11792	95.144273	29.007112	80
Slice 42	1.9475	-6.4058026	33.607634	87.180106	26.780637	80
Slice 43	2.4667857	-6.4301064	29.982303	78.843276	24.42538	80
Slice 44	2.9860714	-6.4427162	26.24229	70.132105	21.94032	80
Slice 45	3.5053571	-6.4436513	22.387783	61.044189	19.324163	80
Slice 46	4.0679	-6.4309641	20.968975	58.617919	18.820537	80
Slice 47	4.6764375	-6.4023208	19.389624	55.859132	18.230942	80
Slice 48	5.2877125	-6.3573578	15.076868	45.588505	15.252629	80
Slice 49	5.8989875	-6.2960358	10.603679	34.789049	12.090157	80
Slice 50	6.5102625	-6.2182231	5.9687668	23.450292	8.7389353	80
Slice 51	7.039737	-6.138341	2.7302657	15.715395	6.4912075	80
Slice 52	7.4874109	-6.060136	0.92491781	11.746828	5.4098238	80
					-	

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 121

Relazione di calcolo: Paratie contenimento scavo e strada

Rev. 0

Lato strada - SG Statico

14.1.2 Caso sismico

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

09/2022

File Information

File Version: 8.15

Created By: Luca Piantanida

Last Edited By: Luca Piantanida

Revision Number: 380

Date: 15/09/2022

Time: 14:44:45

Tool Version: 8.15.1.11236

File Name: Stab glob - lato strada.gsz

Directory: \\10.0.10.1\Dati\1 COMMESSE\343-Genova Maltempo\3 - Lavoro\343-Paratia opera di presa\3-Geostudio\

Last Solved Date: 15/09/2022

Last Solved Time: 14:44:52

Project Settings

Length(L) Units: Meters

Time(t) Units: Seconds

Force(F) Units: Kilonewtons

Pressure(p) Units: kPa

Strength Units: kPa

Unit Weight of Water: 9.807 kN/m3

View: 2D

Element Thickness: 1

Analysis Settings

Lato strada - SG Statico

Kind: SLOPE/W

Method: Bishop

Settings

PWP Conditions Source: Piezometric Line

Apply Phreatic Correction: No

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0

09/2022

Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 122

Use Staged Rapid Drawdown: No

Limit State Design Approach: NTC2018-A2+M2+R2 Statico

Slip Surface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 100

Resisting Side Maximum Convex Angle: 1 °

Driving Side Maximum Convex Angle: 5 °

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant

Advanced

Number of Slices: 50

F of S Tolerance: 0.001

Minimum Slip Surface Depth: 1 m

Materials

Argilliti fratturate

Model: Mohr-Coulomb

Unit Weight: 21 kN/m³

Cohesion': 20 kPa

Phi': 28 °

Phi-B: 0°

Pore Water Pressure

Piezometric Line: 1

Argilliti integre

Model: Mohr-Coulomb

Unit Weight: 26.5 kN/m³

Cohesion': 100 kPa

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 123

Phi': 32 °

Phi-B: 0°

Pore Water Pressure

Piezometric Line: 1

C.A.

Model: High Strength

Unit Weight: 25 kN/m3

Pore Water Pressure

Piezometric Line: 1

Rinterro

Model: Mohr-Coulomb

Unit Weight: 18 kN/m³

Cohesion': 0 kPa

Phi': 30 °

Phi-B: 0°

Pore Water Pressure

Piezometric Line: 1

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (-19.805274; 15.75) m

Left-Zone Right Coordinate: (-9.4674; 10.1052) m

Left-Zone Increment: 20

Right Projection: Range

Right-Zone Left Coordinate: (4.319852; -4.238733) m

Right-Zone Right Coordinate: (20; 1.0552) m

Right-Zone Increment: 20

Radius Increments: 10

Slip Surface Limits

Left Coordinate: (-20; 16) m

Right Coordinate: (20; 1.0552) m

Piezometric Lines

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 124

Piezometric Line 1

Coordinates

	X (m)	Y (m)
Coordinate 1	-50	-1.6
Coordinate 2	0	-1.6
Coordinate 3	0.13	-1.6
Coordinate 4	3.765	-4.3578
Coordinate 5	4.3708	-4.2278
Coordinate 6	6.8159	-5.807
Coordinate 7	7.9748	-6.0811
Coordinate 8	10.3144	-6.2
Coordinate 9	11.1154	-5.7649
Coordinate 10	14.016	-5.2529
Coordinate 11	15.2235	-2.2058
Coordinate 12	20	-1.6
Coordinate 13	50	-1.6

Rev. 0

Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 20 kN/m³

Direction: Vertical


Mode: Variable

Coordinates

X (m)	Y (m)
-4.3	3.7
0	3.7

Points

	X (m)	Y (m)
Point 1	-16.5	11.5065
Point 2	-12.1042	12.3713

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 125

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

	Rev. 0	
Point 3	-11.2949	10.5983
Point 4	-9.4674	10.1052
Point 5	-4.3254	2.7369
Point 6	-2.4153	0
Point 7	-0.12	0
Point 8	-0.12	2.7
Point 9	-0.12	-1.6
Point 10	-0.12	-6.1
Point 11	0.13	-1.6
Point 12	0.13	2.7
Point 13	0.13	0
Point 14	0.13	-6.1
Point 15	3.765	-4.3578
Point 16	4.3708	-4.2278
Point 17	6.8159	-5.807
Point 18	7.9748	-6.0811
Point 19	10.3144	-6.2
Point 20	11.1154	-5.7649
Point 21	14.016	-5.2529
Point 22	15.2235	-2.2058
Point 23	20	1.0552
Point 24	-20	-1.6
Point 25	20	-1.6
Point 26	-20	-20
Point 27	20	-20
Point 28	-20	16

Regions

	Material	Points	Area (m²)
--	----------	--------	-----------

Rev. 0

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 126

09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Region 1	Argilliti integre	26;24;9;10;14;11;15;16;17;18;19;20;21;22;25;27	685.35
Region 2	Argilliti fratturate	24;28;1;2;3;4;5;6;7;9	196.27
Region 3	Argilliti fratturate	22;23;25	6.3413
Region 4	Rinterro	6;5;8;7	8.8183
Region 5	C.A.	8;12;13;11;14;10;9;7	2.2

Current Slip Surface

Slip Surface: 55

F of S: 1.707

Volume: 202.01763 m³

Weight: 4 486.5296 kN

Resisting Moment: 87 272.169 kN-m

Activating Moment: 51 131.089 kN-m

F of S Rank (Analysis): 1 of 4 851 slip surfaces

F of S Rank (Query): 1 of 212 slip surfaces

Exit: (7.7112479; -6.0187653) m

Entry: (-19.805274; 15.75) m

Radius: 23.110697 m

Center: (3.2873197; 16.664558) m

Slip Slices

	X (m)	Y (m)	PWP (kPa)	Base Normal Stress (kPa)	Frictional Strength (kPa)	Cohesive Strength (kPa)
Slice 1	-19.529835	13.658976	-149.64477	-11.989631	-5.1	16
Slice 2	-18.978956	10.562825	-119.28083	27.469762	11.684745	16
Slice 3	-18.428077	8.7974132	-101.96743	49.176948	20.918278	16
Slice 4	-17.877198	7.4073942	-88.335515	64.841616	27.581519	16
Slice 5	-17.326319	6.2333509	-76.821672	76.71527	32.632186	16
Slice 6	-16.77544	5.2067433	-66.753731	85.850097	36.517845	16
Slice 7	-16.225262	4.2911895	-57.774896	98.980148	42.102943	16
Slice 8	-15.675788	3.4632838	-49.655625	116.97728	49.758339	16

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Pag. 127

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Slice 9	-15.126312	2.7062051	-42.230953	134.0512	57.021032	16
Slice 10	-14.576838	2.0088915	-35.392399	150.31399	63.938693	16
Slice	-14.027363	1.3631217	-29.059335	165.85404	70.548927	16
Slice 12	-13.477888	0.76258484	-23.169869	180.7426	76.882036	16
Slice 13	-12.928413	0.20230989	-17.675253	195.03809	82.962873	16
Slice 14	-12.378937	- 0.32170117	-12.536277	208.78914	88.812122	16
Slice 15	-11.69955	- 0.91996241	-6.6691286	208.27848	88.594907	16
Slice 16	-11.083872	-1.432418	-1.6434767	203.69762	86.646358	16
Slice 17	-10.638603	-1.7768851	1.734712	181.90124	90.064435	80
Slice 18	-10.170122	-2.1215684	5.1150213	191.03799	92.942055	80
Slice 19	-9.7016406	-2.4485527	8.3217567	199.68976	95.663998	80
Slice 20	-9.1817333	-2.7908241	11.678411	202.85292	95.567273	80
Slice 21	-8.6104	-3.145478	15.156502	200.27075	92.53778	80
Slice 22	-8.0390667	-3.4776827	18.414435	196.84954	89.1989	80
Slice 23	-7.4677333	-3.7885338	21.462951	192.62953	85.5654	80
Slice 24	-6.8964	-4.0789923	24.311477	187.64556	81.649967	80
Slice 25	-6.3250667	-4.3499048	26.968317	181.92775	77.46352	80

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada

Pag. 128

Slice 26	-5.7537333	-4.6020192	29.440802	175.50223	73.015448	80
Slice 27	-5.1824	-4.8359973	31.735426	168.39161	68.313808	80
Slice 28	-4.6110667	-5.052426	33.857941	160.6154	63.365481	80
Slice 29	-4.3127	-5.1607443	34.920219	156.64575	60.850041	80
Slice 30	-3.9858833	-5.2693267	35.985087	182.18029	73.082318	80
Slice 31	-3.35765	-5.4677964	37.93148	187.31517	74.67623	80
Slice 32	-2.7294167	-5.6468144	39.687109	191.9454	76.113229	80
Slice 33	-2.1283875	-5.8006888	41.196155	197.07504	77.923149	80
Slice 34	-1.5545625	-5.9313349	42.477402	202.77829	80.133689	80
Slice 35	-0.9807375	-6.0467335	43.609115	208.11739	82.236942	80
Slice 36	-0.4069125	-6.147116	44.593566	213.09763	84.23442	80
Slice 37	-0.06	-6.2023629	45.135373	233.76627	94.295736	80
Slice 38	0.065	-6.2202983	45.311265	209.80621	82.230281	80
Slice 39	0.38964286	-6.2622664	43.791008	109.95779	33.076475	80
Slice 40	0.90892857	-6.3219471	40.512619	102.73674	31.105559	80
Slice 41	1.4282143	-6.369768	37.11792	95.144273	29.007112	80
Slice 42	1.9475	-6.4058026	33.607634	87.180106	26.780637	80

Comune di Genova

"Opere di adeguamento idraulico del tratto tombinato di valle del rio Maltempo, affluente del torrente Polcevera"

Progetto Definitivo

Rev. 0 09/2022 Relazione di calcolo: Paratie contenimento scavo e strada Pag. 129

Slice 43	2.4667857	-6.4301064	29.982303	78.843276	24.42538	80
Slice 44	2.9860714	-6.4427162	26.24229	70.132105	21.94032	80
Slice 45	3.5053571	-6.4436513	22.387783	61.044189	19.324163	80
Slice 46	4.0679	-6.4309641	20.968975	58.617919	18.820537	80
Slice 47	4.6764375	-6.4023208	19.389624	55.859132	18.230942	80
Slice 48	5.2877125	-6.3573578	15.076868	45.588505	15.252629	80
Slice 49	5.8989875	-6.2960358	10.603679	34.789049	12.090157	80
Slice 50	6.5102625	-6.2182231	5.9687668	23.450292	8.7389353	80
Slice 51	7.039737	-6.138341	2.7302657	15.715395	6.4912075	80
Slice 52	7.4874109	-6.060136	0.92491781	11.746828	5.4098238	80

