

SKYMETRO

PROLUNGAMENTO DELLA METROPOLITANA IN VALBISAGNO CUP B39J22001360001 CIG 9262977270

PROGETTO DI FATTIBILITÀ TECNICA ED ECONOMICA (D.lgs. n. 36 / 2023)

PARCHEGGIO DI SCAMBIO MOLASSANA **PARATIA DI SOSTEGNO RELAZIONE DI CALCOLO**

Commessa	Fase	Lotto	Disciplina	WBS	Тіро	Numero	Foglio	Rev.
MGE1	P4	L2	GEO	PLM	R	001	00	Α

LAND

Rev.	Descrizione		Nome	Data	Ragioni Modifica
	Adeguamento al parere del CSLLPP e altri Enti e	Redatto	I. Marquez	07/03/2025	
		Verificato	M. Minno	07/03/2025	
A	progetto	Approvato	E. Calatozzo	07/03/2025	
		Autorizzato	P. Cucino	07/03/2025	
		Redatto			
Р		Verificato			
Б		Approvato			
		Autorizzato			
		Redatto			
C		Verificato			
C		Approvato			
		Autorizzato			
		Redatto			
D		Verificato			
U		Approvato			
		Autorizzato			

INDICE

1.	PREMESSA	8
2.	DESCRIZIONE DELL'OPERA	8
3.	NORMATIVA DI RIFERIMENTO E DOCUMENTI DI RIFERIMENTO	14
3.1	NORMATIVA E STANDARD DI RIFERIMENTO	14
3.2	DOCUMENTAZIONE DI RIFERIMENTO	14
3.3	LETTERATURA TECNICA	14
3.4	SOFTWARE UTILIZZATI	14
4.	CARATTERISTICHE DEI MATERIALI	15
4.1	CLASSE DI ESPOSIZIONE E COPRIFERRI	16
5.	INQUADRAMENTO GEOLOGICO-GEOTECNICO	19
5.1	REGIME IDRAULICO	20
6.	INQUADRAMENTO SISMICO	20
7.	CRITERI DI VERIFICA E COMBINAZIONI DI CARICO	23
7.1	APPROCCIO PROGETTUALE E DI VERIFICA	23
7.2	COMBINAZIONI DI CARICO	24
7.3	COMBINAZIONI DI CARICO ADOTTATE	25
7.4	TIRANTI DI ANCORAGGIO	27
7.5	Stabilità globale	28
8.	MODELLAZIONE GEOTECNICA E STRUTTURALE	29
8.1	MODELLAZIONE CON PARATIE PLUS	29
9.	PARATIA DI MICROPALI CON TIRANTI	33
9.1 9.1.1 9.1.2	Sezione 1 Modello numerico Risultati delle analisi e delle verifiche	33 33 36
9.2	VERIFICA CORDOLO DI TESTATA IN CALCESTRUZZO	48
10.	VERIFICA SCAVO IN ROCCIA	49
10.1 10.1.1 10.1.2	Fronte ovest Identificazione dei possibili cinematismi Verifica stabilità fronte roccioso in assenza di interventi	51 51 53

12.	CONCLUSIONI	78
11.	VERIFICA STABILITÀ GLOBALE FRONTE ROCCIOSO IN ZONA DI FRANA	75
10.1	SINTESI DEI RISULTATI	74
10.2.3	Sostegni in roccia	72
10.2.2	VERIFICA STABILITÀ FRONTE ROCCIOSO IN ASSENZA DI INTERVENTI	69
10.2.1	DENTIFICAZIONE DEI POSSIBILI CINEMATISMI	67
10.2	FRONTE EST	67
10.1.3	Sostegni in roccia	64
10.1.2	VERIFICA STABILITÀ FRONTE ROCCIOSO IN ASSENZA DI INTERVENTI	59
10.1.1	IDENTIFICAZIONE DEI POSSIBILI CINEMATISMI	57
10.1	FRONTE SUD	57
10.1.3	Sostegni in roccia	57

INDICE DELLE FIGURE

Figura 1.	Inquadramento territoriale dell'intervento rispetto al tracciato di progetto – zona	
	parcheggio Molassana	9
Figura 2.	Planimetria di progetto – Parcheggio di interscambio	10
Figura 3.	Sviluppata paratia di micropali	10
Figura 4.	Sezioni trasversale – Paratia di micropali	11
Figura 5.	Area di intervento, da Google Earth	11
Figura 6.	Zonizzazione della pericolosità del fronte roccioso	12
Figura 7.	Rete metallica – Fronte roccioso – Planimetria (sx) e sezione (dx)	12
Figura 8.	Classi di esposizione secondo UNI-EN 206-2006	17
Figura 9.	Classi di resistenza minima del calcestruzzo secondo UNI - 1104	17
Figura 10.	Copriferro minimo richiesto secondo UNI-EN 1992-1-1	18
Figura 11.	Espressioni di SS e Cc – Tabella 3.2.V del D.M. 17/01/2018	21
Figura 12.	Valori massimi coefficienti di amplificazione topografica ST – Tabella 3.2.VI del D.M.	
	17/01/2018	21
Figura 13.	Combinazioni di carico ai sensi delle NTC18	24
Figura 14.	Combinazioni di carico ParatiePlus	27
Figura 15.	Modello di calcolo con Paratie Plus	29
Figura 16.	Caratteristiche della paratia – Modellazione in Paratie	30
Figura 17.	Sviluppata paratia con indicazione delle sezioni di calcolo	33
Figura 18.	Sezione 1 – modello di calcolo	34
Figura 19.	Massimi rapporti di mobilitazione spinta passiva SLU GEO	36
Figura 20.	Massimi rapporti di mobilitazione spinta passiva SLV GEO	37
Figura 21.	Inviluppo deformata della paratia allo SLE	37
Figura 22.	Deformata della paratia allo SLV	38
Figura 23.	Sezione 1 – modello di calcolo e superficie di scorrimento critica SLU GEO	39
Figura 24.	Sezione 1 -modello di calcolo e superficie di scorrimento critica SISMICA GEO	39
Figura 25.	Sezione 1 – Inviluppo del tiro nei tiranti in condizioni statiche SLU STR	40
Figura 26.	Sezione 1 – Sforzo assiale nei tiranti in condizioni sismiche in fase finale SLV STR	41
Figura 27.	Valori di α in funzione del tipo di terreno e delle modalità di iniezione	42
Figura 28.	Trave di ripartizione – schema statico	44
Figura 29.	Sezione 1 – Risultati dell'analisi SLU STR: Caratteristiche della sollecitazione	46
Figura 30.	Sezione 1 – Risultati dell'analisi SLV STR: Caratteristiche della sollecitazione	47
Figura 31.	Facce rocciose analizzate – Planimetria	49
Figura 32.	Scavo in roccia – Sezione trasversale	49
Figura 33.	Scivolamento planare – Fronte Ovest	51
Figura 34.	Scivolamento dei cunei – Fronte Ovest	52
Figura 35.	Ribaltamento di cunei – Fronte Ovest	52
Figura 36.	Ribaltamento flessurale – Fronte Ovest	53
Figura 37.	Analisi di stabilità – Scivolamento di cunei – F1 e F3 – SLU	54
Figura 38.	Analisi di stabilita – Scivolamento di cunei – F1 e F3 – SLV	55
Figura 39.	Analisi di stabilità – Ribaltamento flessurale – SU – SLU GEO	56
Figura 40.	Analisi di stabilita – Ribaltamento flessurale – SU – SLV +	56
Figura 41.	Scivolamento planare – Fronte Sud	5/
Figura 42.	Scivolamento del cunel – Fronte Sud	58
Figura 43.	Ribaltamento di cunei – Fronte Sud	58

Figura 44.	Ribaltamento flessurale – Fronte Sud	59
Figura 45.	Analisi di stabilità – Scivolamento planare – F3 – SLU	59
Figura 46.	Analisi di stabilità – Scivolamento planare – F3 – SLV	60
Figura 47.	Analisi di stabilità – Scivolamento di cunei – F1 e F2 – SLU	61
Figura 48.	Analisi di stabilità – Scivolamento di cunei – F1 e F2 – SLV	61
Figura 49.	Analisi di stabilità – Scivolamento di cunei – F1 e F3 – SLU	62
Figura 50.	Analisi di stabilità – Scivolamento di cunei – F1 e F3 – SLV	62
Figura 51.	Analisi di stabilità – Scivolamento di cunei – F2 e F3 – SLU	63
Figura 52.	Analisi di stabilità – Scivolamento di cunei – F2 e F3 – SLV	63
Figura 53.	Chiodi DYWIDAG – Parametri	64
Figura 54.	Analisi di stabilità – Scivolamento planare – F3 – SLU	65
Figura 55.	Analisi di stabilità – Scivolamento planare – F3 – SLV	65
Figura 56.	Analisi di stabilità – Scivolamento di cunei – F1 e F3 – SLU	66
Figura 57.	Analisi di stabilità – Scivolamento di cunei – F1 e F3 – SLV	67
Figura 58.	Scivolamento planare – Fronte East	67
Figura 59.	Scivolamento dei cunei – Fronte East	68
Figura 60.	Ribaltamento di cunei – Fronte Est	68
Figura 61.	Ribaltamento flessurale – Fronte Est	69
Figura 62.	Analisi di stabilità – Scivolamento di cunei – S0 e F3 – SLU	70
Figura 63.	Analisi di stabilità – Scivolamento di cunei – S0 e F3 – SLV	70
Figura 64.	Analisi di stabilità – Scivolamento di cunei – F2 e F3 – SLU	71
Figura 65.	Analisi di stabilità – Scivolamento di cunei – F2 e F3 – SLV	71
Figura 66.	Chiodi DYWIDAG – Parametri	72
Figura 67.	Analisi di stabilità – Scivolamento di cunei – S0 e F3 – SLU	73
Figura 68.	Analisi di stabilità – Scivolamento di cunei – S0 e F3 – SLV	73
Figura 69.	Sezione di calcolo – Stabilità globale fronte roccioso	75
Figura 70.	Modello di calcolo e superficie di scorrimento critica SLU GEO	76
Figura 71.	Modello di calcolo e superficie di scorrimento critica SLV +	76
Figura 72.	Modello di calcolo e superficie di scorrimento critica SLV -	77

INDICE DELLE TABELLE

Tabella 1. Classi di esposizione secondo UNI–EN 206-2006	16
Tabella 2. Copriferri adottati nel calcolo	18
Tabella 3. Parametri geotecnici caratteristici associati alle unità geotecniche	19
Tabella 4. Famiglie principali di discontinuità	19
Tabella 5. Parametri per la definizione dell'azione sismica di progetto	22
Tabella 6. Sezione 1 – caratteristiche geometriche	34
Tabella 7. Sezione 1 – Parametri geotecnici di calcolo	35
Tabella 8. Parametri per il calcolo dell'azione sismica	35
Tabella 9. Sezione 1 – Caratteristiche geometriche dei tiranti	40
Tabella 10. Sezione 1 – Verifiche a sfilamento della fondazione dei tiranti	42
Tabella 11. Sezione 1 – Verifiche strutturali dell'armatura dei tiranti	43
Tabella 12. Sezione 1 – Verifica di gerarchia delle resistenze	44
Tabella 13. Sezione 1 – Verifiche travi di ripartizione	45
Tabella 14. Sezione 1 – Sollecitazioni massime SLU e SLV	48
Tabella 15. Immersione e inclinazione – Fronti rocciosi	49

1. PREMESSA

Il progetto SkyMetro prevede l'estensione del servizio della rete metropolitana esistente da Genova Brignole fino al quartiere di Molassana, con lunghezza di circa 7 Km, in doppio binario su viadotto, con 7 stazioni, andando a servire la Val Bisagno, una delle due principali vallate urbanizzate facenti parte del Comune di Genova.

La linea si sviluppa in sponda destra a filo argine del torrente Bisagno, partendo dalla nuova stazione denominata "Brignole Sant'Agata", fino alla stazione denominata "Stadio Marassi" per poi portarsi a nord della piastra di tombamento del torrente, in zona Marassi, sulla sponda sinistra dove è prevista l'ubicazione delle stazioni "Parenzo", "Staglieno", "Ponte Carrega", "San Gottardo" e "Molassana".

Per soddisfare l'attuale finanziamento, la realizzazione dell'opera verrà divisa in due lotti di cui il primo, della lunghezza di circa 4,5 km, parte dalla stazione "Brignole Sant'Agata" e arriva alla stazione "Ponte Carrega", definendo così un lotto funzionale. Il secondo lotto, partendo dalla stazione "Ponte Carrega", termina alla stazione di testa "Molassana", definendo così un lotto di completamento.

La nuova infrastruttura è provvista di un binario di servizio per il collegamento al deposito esistente di Dinegro.

Presso il capolinea di Molassana sono stati progettati un parcheggio di scambio e un polo intermodale che permette lo scambio con bus proveniente da monte.

Il presente elaborato riguarda il dimensionamento delle opere di sostegno ai fini dello scavo e della soluzione permanente per la realizzazione del parcheggio di interscambio presso la cava Montanasco a Molassana.

2. DESCRIZIONE DELL'OPERA

L'intervento proposto è localizzato all'interno dell'anfiteatro della cava Montanasco, in versante sinistro del T.Bisagno, a Molassana, come mostrato nell'immagine seguente.

In particolare, interessa il settore occidentale della cava, a margine della Via Adamoli, nella zona adiacente allo svincolo stradale che porta al centro abitato di Molassana attraverso il ponte Alexander Fleming, sul Torrente Bisagno.

Figura 1. Inquadramento territoriale dell'intervento rispetto al tracciato di progetto - zona parcheggio Molassana

I livelli inferiori del piazzale, come si evince dalla Figura 1, ospitano diverse attività industriali e artigianali e alcune palazzine che un tempo erano adibite a uffici e servizi degli impianti di cava.

Laddove l'attività di escavazione è terminata, è presente il sito di stoccaggio intermedio dei detriti provenienti dallo scavo della galleria scolmatore del Bisagno, dove è previsto l'inserimento del parcheggio in esame.

La realizzazione del parcheggio di interscambio a Molassana prevede un'altezza di scavo massima di 18m in una sequenza di:

- Materiale di riporto (proveniente allo scavo dello scolmatore composto da sabbia grossolana, limo, ghiaia e ciottoli) *;
- Cappellaccio costituito da trovanti, ghiaia e sabbia limosa;
- Calcari marnosi dell'Antola.

*Si precisa che, le ipotesi progettuali redatti in questa fase fanno riferimento allo stato conoscitivo attuale e pertanto le fasi successive del progetto dovranno tenere conto dell'eventuale variazione dello spessore del materiale di riporto legato alle attività di stoccaggio del materiale.

Gli interventi previsti nell'area di interesse comprendono una <u>paratia di micropali tirantata</u> su più ordini realizzata con micropali di diametro 168.30mm, spessore 10mm e interasse 0.35m e di lunghezza variabile, incastrati in roccia di 2m. Nella zona inferiore allo scavo (fino a fondo scavo), la stabilità della parete in roccia è garantita da chiodi di diametro ϕ 28mm di lunghezza 4.5m inclinati 10°

e da una rete metallica aderente ai fini di evitare distacchi di blocchi di piccole dimensioni. I tiranti saranno disposti su più ordini a passo costante pari 2.1m. Tali tiranti si comporranno di più trefoli (3) con un diametro di bulbo di 16cm. La lunghezza libera è valutata in base all'inclinazione del tirante (20°) e alla sua distanza dal piede della paratia. Durante l'installazione degli ordini di tiranti attivi, questi verranno opportunamente pretirati secondo le esigenze progettuali.

La paratia di micropali garantisce il minimo ingombro delle opere di sostegno in modo da rimanere all'interno delle aree designate per il progetto.

Figura 2. Planimetria di progetto – Parcheggio di interscambio

Figura 3. Sviluppata paratia di micropali

Figura 4. Sezioni trasversale – Paratia di micropali

L'intervento previsto si colloca al piede di un fronte roccioso, il quale si identifica come residuo di attività di coltivazione di cava, come si può vedere nelle immagini seguenti. La soluzione progettuale proposta (paratia di micropali tirantata) permette di minimizzare l'impatto delle operazioni di scavo sull'area circostante e così di perturbare in maniera minima le condizioni geostatiche dell'ammasso roccioso. Inoltre, le opere previste ricadono al di fuori dell'area definita come frana attiva (P4 – PAI) ai piedi del versante lato Ovest (vedere immagine sotto).

Nelle seguenti immagini sono riportate le aree di intervento e le opere di sostegno previste.

Figura 5. Area di intervento, da Google Earth

Figura 6. Zonizzazione della pericolosità del fronte roccioso

La parete rocciosa appare di per sé stabile, come descritto nella relazione geologica e verificato nel presente documento; pertanto, l'intervento proposto a tal riguardo mira ad evitare l'eventuale distacco di materiale corticale che potrebbe interferire con l'area piana sottostante. A fine di evitare questo possibile fenomeno, si propone un intervento che prevede l'installazione di una rete metallica saldata chiodata, come mostrato nelle immagini seguenti, come protezione corticale.

Figura 7. Rete metallica – Fronte roccioso – Planimetria (sx) e sezione (dx)

Si specifica che la soluzione progettuale proposta è basata sulle informazioni geologico-geotecniche disponibili alla data di consegna del presente elaborato. In particolare, le informazioni sono state dedotte dai risultati della campagna indagini eseguita nel PFTE e dalle indagini integrative (S24-CC1 e

prove simiche). Le ulteriori indagini non ancora disponibili consentiranno di avere un quadro conoscitivo più approfondito e di confermare le ipotesi relative alla stratigrafia fatte in questa fase. Di conseguenza, così come per lo spessore del materiale di riporto, per eventuali aggiornamenti si rimanda alle fasi successive del progetto.

3. NORMATIVA DI RIFERIMENTO E DOCUMENTI DI RIFERIMENTO

3.1 Normativa e standard di riferimento

Di seguito si riporta l'elenco generale delle Normative Nazionali ed internazionali vigenti alla data di redazione del presente documento, quale riferimento per la redazione degli elaborati tecnici e/o di calcolo dell'intero progetto nell'ambito della quale si inserisce l'opera oggetto della presente relazione:

- [1] D.M. 17 gennaio 2018 Aggiornamento delle "Norme tecniche per le costruzioni";
- [2] Circolare 21 gennaio 2018 Istruzione per l'applicazione dell'aggiornamento delle "Norma tecniche per le costruzioni";
- [3] UNI EN 1990:2006: Eurocodice 0 Criteri generali di progettazione strutturale;
- [4] UNI EN 1991-1-1:2004 Parte 1-1: Eurocodice 1 Azioni in generale Pesi per unità di volume, pesi proprio e sovraccarichi per gli edifici;
- [5] UNI EN 1992-1-1:2015 Parte 1-1: Eurocodice 2 Regole generali e regole per gli edifici;
- [6] UNI EN 1997-1:2005 Parte 1: Eurocodice 7 Progettazione geotecnica Regole generali;

3.2 Documentazione di riferimento

- [7] MGE1P2LVGEOCOMR006-00_A Studi e indagini Geologia Parcheggio di interscambio Molassana – Relazione geologica;
- [8] Sondaggio S24-CC1;

3.3 Letteratura tecnica

- [9] C. Falcioni, S. Nosengo, L. Paoletti, S. Pedemonte (2018). Caratteristiche di resistenza al taglio di discontinuità naturali ed artificiali in roccia per alcuni litotipi liguri;
- [10]D.R. Wines, P.A. Lilly (2003). Estimates of rock joint shear strength in part of the Fimiston open pit operation in Western Australia.

3.4 Software utilizzati

I software utilizzati per la progettazione sono:

- PARATIE PLUS 2021 versione 21.1.0 HarpaCeAS
- Slide2 versione 9.024 Rocscience Inc.
- Dips versione 8.021 Rocscience Inc.
- RocPlane versione 4.012 Rocscience Inc.
- RocTopple versione 2.005 Rocscience Inc.
- SWedge versione 7.019 Rocscience Inc.
- Fogli di calcolo sviluppati internamente

4. CARATTERISTICHE DEI MATERIALI

Si riportano di seguito le principali caratteristiche dei diversi materiali impiegati nelle opere in progetto, con l'indicazione dei valori di resistenza e deformabilità adottati nelle verifiche.

Per la completa e puntuale definizione delle caratteristiche dei materiali previsti per la realizzazione delle opere si rimanda all'elaborato specifico.

Calcestruzzo per cordolo				
Classe di resistenza minima	C25/30			
Valore caratteristica resistenza cubica a 28 giorni	R _{ck} = 30 MPa			
Valore caratteristico resistenza cilindrica a 28	f _{ck} =24.9 MPa			
giorni				
Resistenza a compressione cilindrica media	$f_{cm} = f_{ck} + 8 = 32.9 \text{ MPa}$			
Resistenza a trazione assiale	$f_{ctm} = 0.30* f_{ck}^{2/3} = 2.56 \text{ MPa}$			
Resistenza di progetto a compressione a 28	f _{cd} = 0.85f _{ck} /1.5 = 14.11 MPa			
giorni				
Modulo di Young a 28 giorni	$E_{cm} = 22000 (f_{cm}/10)^{0.3} = 31447 MPa$			

Acciaio per barre d'armatura			
Тіро	B450C		
Tensione caratteristica di rottura	f _{uk} = 540MPa		
Tensione caratteristica di snervamento	f _{yk} =450 MPa		
Resistenza di progetto	$f_{yd} = f_{yk}/\gamma_s = 391.3$		
Modulo di Young	E = 210000 MPa		
Tensione massima di compressione in esercizio	σ _{lim} = 0.75f _{yk} = 337.5 MPa		

Micropali		
Calcestruzzo		
Classe di resistenza minima	C25/30	
Acciaio da carpenteria		
Тіро	S275	
Tensione caratteristica di rottura	f _{uk} = 275 MPa	
Tensione caratteristica di snervamento	f _{yk} = 430 MPa	
Resistenza di progetto	$f_{yd} = f_{yk}/\gamma_s = 373.9 \text{ MPa}$	

Tiranti di ancoraggio definitivo		
Boiacca di cemento		
Miscela cementizia di iniezione per tiranti	C25/30	
Classe di esposizione	XC2	
Acciaio armonico stabilizzato per trefoli		
Trefoli	0.6"	
Tensione caratteristica di rottura	f _{ptk} ≥ 1860 N/mm ²	
Tensione elastica all'1% di deformazione $f_{p(1)k} \ge 1670 \text{ N/mm}^2$		

Acciaio travi di ripartizione			
Acciaio da carpenteria	S275		
Tensione caratteristica di snervamento	f _{yk} ≥ 275 N/mm²		
Tensione caratteristica di rottura	$f_{tk} \ge 430 \text{ N/mm}^2$		

Bulloni da roccia (diametro nominale φ 28mm)								
Boiacca di cemento								
Miscela cementizia di iniezione per tiranti	C25/30							
Classe di esposizione	XC2							
Acciaio								
Acciaio da carpenteria	\$555/700							
Carico snervamento	F _{yk} = 308 kN							
Carico ultimo	F _{tk} = 339 kN							

4.1 Classe di esposizione e copriferri

Con riferimento alle specifiche di cui alla norma UNI 11104, si definiscono di seguito la classe di esposizione del calcestruzzo delle diverse parti della struttura oggetto dei dimensionamenti di cui al presente documento:

Elemento	Classe cls	Classe esposizione	Ambiente	Diametro massimo aggregati [mm]	Max a/c	Min cemento [kg/mc]
Cordoli	C25/30	XC2	Ordinario	25	0,60	300

Tabella 1. Classi di esposizione secondo UNI-EN 206-2006

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 –1	Descrizione dell'ambiente	Esempio	Massimo rapporto a'C	Minima Classe di resistenza	Contenuto minimo in arta (%)	Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 –1	Descrizione dell'ambiente	Esempio	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in atia (%)
1 Assenza	i di rischio d	li corrosione o attacco	and the second	a		10 A	4 Corrosi	one indotta	da cloruri presenti nell'	acqua di mare	-		
		Per calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto deservizioni eccetto	Interno di edifici con umidità relativa molto bassa. Calcestruzzo non armato all'interno di edifici.				4 a 5 b	XS1	Esposto alla salsedine marina ma non direttamente in contatto con l'acqua di mare .	Calcestruzzo armato ordinario o precompresso con elementi strutturali sulle coste o in prossimità.	0,50	C 32/40	
1	XO	attacco chimico. Calcestruzzi con armatura o inserti metallici:in	calcestruzzo non armato immerso in suolo non aggressivo o in acqua non aggressiva. Calcestruzzo non armato soggetto a cicli	-	C 12/15			XS2	Permanentemente sommersp.	Calcestruzzo armato ordinario o precompresso di strutture marine completamente immersi in acqua.	0,45	C 35/45	
2 Corrosi	one indotta	ambiente molto asciutto.	di bagnato asciutto ma non soggetto ad abrasione, gelo o attacco chimico.					XS3	Zone esposte agli spruzzi o alle marea.	precompresso con elementi strutturali esposti alla battigia o alle zone soggette	0,45	C 35/45	
Nota - Le cond	izioni di umidità si	riferiscono a quelle presenti nel cop	priferro o nel ricoprimento di inserti metallici, ma in	molti casi si	u può consider	are che tali				agli spruzzi ed onde del mare.			
condizioni rillet	tano quelle dell'arr	sbiente circostante. In questi casi la e	classificazione dell'ambiente circostante può esse	re adeguata	LQuesto può n	on essere il	5 Attacco	dei cicli di g	elo/disgelo con o senza	a disgelanti *	0 0	í —	
2 a	XC1	Asciutto o permanentemente bagnato.	Interni di edifici con umidità relativa bassa. Calcestruzzo armato ordinario o precompresso con le supefici all'interno di strutture con eccezione delle parti	0,60	C 25/30		2 b	XF1	Moderata satutazione d'acqua,in assenza di agente disgelante.	Superici verticali di calcestruzzo come facciate e colonne esposte alla pioggia ed al gelo. Superici non verticali e non soggette alla completa saturazione ma esposte al gelo, alla pioggia o all'acqua.	0,50	C 32/40	
2 a	XC2	Bagnato, raramente asciutto.	Parti di strutture di contenimento liquidi fondazioni. Calcestruzzo armato ordinario o precemenese prevalentamente immerco	0,60	C 25/30	3	3	XF2	Moderata saturazione d'acqua, in presenza di agente disgelante.	Elementi come parti di ponti che in altro modo sarebbero classificati come XF1 ma che sono esposti direttamente o indirettamente agli agenti disgelanti.	0,50	C 25/30	3,0
5 a	XC3	Umidità moderata.	in acqua o terreno non aggressivo. Caloestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con unifici do modente dalla pioggia, o in interni	0,55	C 28/35	·	2 b	XF3	Elevata saturazione d'acqua, in assenza di agente disgelante	Superici ortzzontali in editici dove l'acqua può accumularsi e che possono essere soggetti ai fenomeni di gelo, elementi soggetti a frequenti bagnature ed esposti al gelo.	0,50	C 25/30	3,0
4 a 5 b	XC4	Ciclicamente asciutto e bagnato.	Caloestruzzo armato ordinario o precompresso in esterni con superfici soggette a alternanze di asciutto ed umido. Galoestruzzi a vista in ambienti urbani.	0,50	C 32/40		3	XF4	Elevata saturazione d'acqua, con presenza di agente antigelo oppure acqua di mare.	Superfici orizzontali quali strade o pavimentazioni esposte al gelo ed ai sali disgelanti in modo diretto o indiretto, elementi esposti al gelo e soggetti a frequenti bagnature in presenza di agenti disgelanti o di acqua di mare	0,45	C 28/35	3,0
			comprese nella classe XC2				6 Attacco	chimico**					
3 Corrosi	one indotta (da cloruri esclusi quelli	provenenti dall'acqua di mare		<u> </u>	<u> </u>	- AND REAL PROPERTY OF	No. of the second s	Ambiente chimicamente	Contenitori di fannhi e vasche di			
5 a	XD1	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in superfici o parti di ponti e viadotti esposti a spruzzi d'acqua	0,55	C 28/35	· · · · · ·	5 a	XA1	debolmente aggressivo secondo il prospetto 2 della UNI EN 206-1	decantazione. Contenitori e vasche per acque reflue.	0,55	C 28/35	
4 a 5 b	XD2	Bagnato, raramente asciutto.	contenenti cloruri. Calcestruzzo armato ordinario o precompresso in elementi strutturali totalmente immensi in acqua anche	0,50	C 32/40	· · · · · · ·	4 a 5 b	XA2	Ambiente chimicamente moderatamente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di terreni aggressivi.	0,50	C 32/40	
		Cirlinamente bannato a	industriale contenete cloruri (Piscine). Calcestruzzo armato ordinano o precompresso, di elementi strutturali direttamente soggetti agli agenti dispelanti o agli spruzzi contenenti agenti ricealenti				5 c	XA3	Ambiente chimicamente fortemente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o parete a contatto di acque industriali fortemente aggressive. Contenitori di foraggi, mangimi e liguame provenienti dall'allevamento animale. Torri di raffreddamento di fumi di gas di scarico industriali.	0,45	C 35/45	
5 c	5 c XD3 Ciclicamente bagnato e asciutto.		agenti disgelanti. Calcestruzzo armato ordinario o precompresso, elementi con una superficie immersa in acqua contenente clorari e fatta esposta all'aria. Parti di ponti, pavimentazioni e parchegi per auto.		C 35/45		*) IL grac - mo - ele **) Da p	do di saturazione derato: occasion vato: alta freque arte di acque de	della seconda colonna riflette l lalmente gelato in condizione di nza di gelo in condizioni di satu i terreno e acque fluenti.	a relativa frequenza con cui si verifica il ge saturazione; razione.	lo in condi	izioni di satur	azione:

Figura 8. Classi di esposizione secondo UNI-EN 206-2006

La scelta delle classi di resistenza dei conglomerati riportate in precedenza viene di seguito verificata impiegando il Prospetto 4 della UNI-EN 11104 il quale prescrive, in funzione delle Classi di Esposizione, la resistenza minima delle miscele da adottare:

	Classi di esposizione																	
	Nessun rischio di corrosione dell'armatura	chio di Corrosione delle armature indotta dalla carbonatazione atura			Corrosione delle armature indotta da cloruri				Attacco da cicli di gelo/disgelo			Ambiente aggressivo per attacco chimico						
						Acqu	a di ma	ire	Clor	uri prover a altre for	nienti nti							
	X0	XC1	XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	XF1	XF2	XF3	XF4	XA1	XA2	XA3
Massimo rapporto a/c	-	0,	60	0,55	0,50	0,50	0,4	45	0,55	0,50	0,45	0,50	0,50 0,50 0,45		0,55	0,50	0,45	
Minima classe di resistenza")	C12/15	C25	5/30	C28/35	C32/40	C32/40	C35	/45	C28/35	C32/40	C35/45	32/40	25	/30	28/35	28,35	32/40	35/45
Minimo contenuto in cemento (kg/m ³)		3	00	320	340	340	36	0	320	340	360	320	3	40	360	320	340	360
Contenuto minimo in aria (%)														3,0 ^{a)}				
Altri requisiti												Aggregat di adegu	ti conformi ata resiste	alla UNI E enza al gel	EN 12620 lo/disgelo	È richiest cementi r	o l'impieg esistenti a	o di li solfati ^{b)}
 Nel prospetto 7 della Ul di durabilità nei riguardi Quando il calcestruzzo UNI 7087, per la relativi Qualora la presenza di 	NI EN 206-1 viene ripo di acque o terreni ago non contiene aria agg a classe di esposizion solfati comporti le clas	ortata la gressivi junta, le e. ssi di es	classe sue p	C8/10 che restazioni one XA2 e	e corrispon devono es: XA3 è esse	ide a spec sere verifi enziale ut	cifici calo cate risp ilizzare	cestru: petto a un cer	zzi destina d un calce nento resi	ti a sottofi estruzzo a stente ai s	ondazioni erato per solfati sec	e ricoprim il quale è p ondo UNI !	enti. Per ta provata la 9156.	ale classe resistenza	dovrebber al gelo/dis	o essere de sgelo, da de	efinite le pr eterminars	escrizioni i secondo

Figura 9. Classi di resistenza minima del calcestruzzo secondo UNI - 1104

Con riferimento al §4.1 del DM 17.01.2018 e al §4.4.1.1 del UNI-EN 1992-1-1 il copriferro nominale è pair a:

$c_{nom}{=}c_{min}{+}\Delta c_{dev}$

dove:

- Δc_{dev} è la tolleranza di posa, che si può assumere pari a 10mm con riferimento al §4.4.1.3 del UNI-EN 1992-1-1.
- c_{min} =max(c_{min,b} ; c_{min,dur} ; 10mm)

essendo :

- c_{min,b} copriferro minimo necessario per l'aderenza delle armature, assunto pari al diametro della barra
- c_{min,dur} copriferro minimo correlato alle condizioni ambientali funzione della classe strutturale e della classe ambientale con riferimento alla Tabella 4.4N del UNI-EN 1992-1-1. Per una classe di esposizione XC2 e una classe minima di consistenza S4, c_{min}=25mm

Table 4.4N: Values of minimum cover, $c_{min,dur}$, requirements with regard to durability for reinforcement steel in accordance with EN 10080.

Environmenta	Environmental Requirement for <i>c</i> _{min,dur} (mm)										
Structural	Exposu	Exposure Class according to Table 4.1									
Class	X0	XC1	XC2 / XC3	XC4	XD1 / XS1	XD2 / XS2	XD3 / XS3				
S1	10	10	10	15	20	25	30				
S2	10	10	15	20	25	30	35				
S 3	10	10	20	25	30	35	40				
S4	10	15	25	30	35	40	45				
S 5	15	20	30	35	40	45	50				
S6	20	25	35	40	45	50	55				

Figura 10.Copriferro minimo richiesto secondo UNI-EN 1992-1-1

Dunque,

 $c_{netto} = c_{min} + \Delta c_{dev} = (20; 25mm; 10mm) + 10mm = 35mm$

	Copriferro
Elemento	[mm]
Cordoli	35

Tabella 2. Copriferri adottati nel calcolo

5. INQUADRAMENTO GEOLOGICO-GEOTECNICO

Il dimensionamento dell'opera è stato eseguito con riferimento alla caratterizzazione geotecnica riportata nell'elaborato MGE1PLVGEOCOMR005-00_A, alla relazione geologica MGE1P2LVGEOCOMR006-00_A e ai risultati del sondaggio S24-CC1.

Dal punto di vista geologico, la cava Montanasco si sviluppa integralmente nella formazione dei "Calcari di Monte Antola", costituita da un flysch all'interno del quale si alternano calcari, calcari marnosi e arenacei, marnoscisti, calcareniti e in minor misura livelli argillitici. I sondaggi realizzati nel piazzale AMIU in fregio a Via Adamoli (SKYL17) e presso la spalla del ponte Fleming (SKY-S7), hanno raggiunto, sotto a una sequenza di riporti detritici e sedimenti alluvionali, le Argilliti di Montoggio, che rappresentano la formazione stratigraficamente alla base dei calcari.

Il modello geotecnico di calcolo è stato definito sulla base di quanto riportato nella relazione geologica.

I parametri sono stati scelti considerando la caratterizzazione geotecnica eseguita lungo il tracciato (riportata nell'elaborato MGE1PLVGEOCOMR005-00_A).

Si riporta a seguire la tabella che riassume i parametri geotecnici assunti nel calcolo.

Unità geotecnica	γ [kN/m³]	c' [kN/m²]	φ [°]	E _{op} ' [MPa]
Materiale di riporto	21.0	0	34	9
Cappellaccio (Ghiaia e sabbia limosa)	21.0	4	33	16
Calcari di Monte Antola	26.5	60	42	500

Tabella 3. Parametri geotecnici caratteristici associati alle unità geotecniche

Nel settore occidentale della cava, la formazione dei Calcari di Monte Antola è nel suo complesso fortemente tettonizzata. Il rilevamento geostrutturale ha individuato la distribuzione spaziale delle discontinuità presenti e reciprocamente intersecate sui fronti. Il rilevamento geomeccanico sul modello digitale del terreno ha riconosciuto, oltre alla stratificazione, altre tre famiglie principali di discontinuità di seguito riportate.

Discontinuità	Immersione	Inclinazione
Stratificazione (S0)	238°	47°
Fratturazione (F1)	29°	51°
Fratturazione (F2)	224°	89°
Fratturazione (F3)	349°	87°

Tabella 4. Famiglie principali di discontinuità

5.1 Regime idraulico

Uno studio idrogeologico più approfondito presso il parcheggio di interscambio a Molassana è previsto nelle successive fasi progettuale. In questa fase progettuale, la falda è dunque trascurata ai fini del dimensionamento dell'opera.

6. INQUADRAMENTO SISMICO

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica necessari per la determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato dal D.M. 17/01/2018 e relativa circolare applicativa.

In funzione della tipologia di opera in progetto è stata considerata una vita nominale VN pari a 50 anni ed un coefficiente d'uso della costruzione cu pari a 2.0, relativo ad una classe d'uso IV. Il periodo di riferimento cui sono correlati i parametri del moto sismico viene valutato moltiplicando la vita nominale per il coefficiente di classe d'uso:

$$V_R = V_N \cdot C_u = 50 \cdot 2 = 100$$
anni

In funzione dello stato limite rispetto al quale viene verificata l'opera si definisce una probabilità di superamento P_{VR} nel periodo di riferimento.

Per il progetto dell'opera in esame si farà riferimento allo stato limite di salvaguardia della vita (SLV), a cui è associata una P_{VR} pari al 10% [NTC 2018– Tabella 3.2.I].

Nota le probabilità di superamento nel periodo di riferimento è possibile valutare il periodo di ritorno T_R , come previsto nell'allegato A alle norme tecniche per le costruzioni, secondo la seguente espressione:

$$T_R = -\frac{V_R}{\ln(1 - P_{VR})} = -\frac{100}{\ln(1 - 0.10)} = 949 \ anni$$

Sulla base delle coordinate geografiche del sito e del tempo di ritorno del sisma di progetto, T_R , si ricavano i parametri che caratterizzano il sisma di progetto relativo al sito di riferimento, rigido ed orizzontale:

- ag: accelerazione orizzontale massima
- F₀: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale

- T*_C: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per la determinazione dell'azione sismica dell'opera in esame sono state considerate le seguenti coordinate di riferimento:

- latitudine 44.451944°;
- longitudine 8.980833°.

Per la definizione dell'azione sismica di progetto, l'effetto della risposta sismica locale è stato valutato con approccio semplificato (cfr. § 3.2.2 del DM 17/01/2018) basato sulla classificazione del sottosuolo

sulla base dei valori della velocità di propagazione delle onde di taglio, poiché le condizioni stratigrafiche e le proprietà dei terreni sono chiaramente riconducibili alle categorie definite nella Tab. 3.3.II del DM 17/01/2018.

Pertanto, tenendo conto dei fattori locali del sito, l'accelerazione orizzontale massima attesa al sito è valutata con la relazione (cfr. cap. 7 DM 17/01/2018):

$$a_{\max} = S_s \cdot S_T \cdot \left(\frac{a_g}{g}\right)$$

dove:

- a_g è l'accelerazione orizzontale massima attesa su sito di riferimento rigido.
- S_s è il fattore di amplificazione stratigrafica del terreno, funzione della categoria del sottosuolo di fondazione e dei parametri sismici F_0 e a_g/g (Tabella 3.2.V del D.M. 17/01/2018);

rustin ciari	Lopression an og e ar et	
Categoria sottosuolo	SS	c _c
А	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10 \cdot (T_C^*)^{-0,20}$
С	$1,00 \le 1,70-0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0,90 \le 2,40-1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80 \cdot$	$1,25 \cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Tabella 3.2.V – Espressioni di $S_S e di C_C$

Figura 11. Espressioni di SS e Cc – Tabella 3.2. V del D.M. 17/01/2018

- S_T è il fattore di amplificazione che tiene conto delle condizioni topografiche, il cui valore dipende dalla categoria topografica e dall'ubicazione dell'opera (Tabella 3.2.Vi del D.M. 17/01/2018). Data la configurazione si è considerata la categoria topografica T1.

Categoria topografica	Ubicazione dell'opera o dell'intervento	ST
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta del rilievo	1,2
T4 In corrispondenza della cresta del rilievo		1,4

Figura 12.Valori massimi coefficienti di amplificazione topografica ST – Tabella 3.2.VI del D.M. 17/01/2018

I valori delle grandezze necessarie per la definizione dell'azione sismica sono riassunti nella tabella seguente:

Azione sismica di progetto						
T _R	949 anni					
a _g /g	0.102					
Fo	2.4895					
Categoria di sottosuolo	А					
Ss	1.0					
Categoria topografica	T1					
ST	1.0					
a _{max}	0.102					

Tabella 5. Parametri per la definizione dell'azione sismica di progetto

7. CRITERI DI VERIFICA E COMBINAZIONI DI CARICO

7.1 Approccio progettuale e di verifica

Le verifiche sono state condotte in accordo con le prescrizioni e le indicazioni del DM 17/01/2018 e della Circolare n. 7/19.

In accordo con il § 6.5.3.1.2 del DM 17/01/2018, le verifiche delle strutture di sostegno sono state condotte nei riguardi dei seguenti stati limite ultimi (SLU GEO, SLU STR, SLE e UPL):

- SLU di tipo geotecnico (GEO)
 - collasso per rotazione intorno a un punto dell'opera (atto di moto rigido);
 - collasso per carico limite verticale;
 - sfilamento di uno o più ancoraggi;
 - instabilità globale del complesso opera di sostegno-terreno;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza in uno o più ancoraggi;
 - raggiungimento della resistenza in uno o più puntoni;
 - raggiungimento della resistenza strutturale della paratia;
 - controllo dello stato tensionale e fessurativo degli elementi strutturali.

Le azioni considerate per la verifica della berlinese sono le seguenti:

- Azioni permanenti strutturali (G1): peso proprio degli elementi strutturali;
- Azioni permanenti non strutturali (G2): spinta del terreno a monte e a valle dell'opera; carico distribuito sul piano campagna a monte della struttura di sostegno al fine di simulare il piano campagna non orizzontale;
- Azioni variabili (Q_k): carico variabile sul piano campagna atto a simulare la presenza di sovraccarichi variabili in fase costruttiva legato alle varie fasi realizzative ed al traffico veicolare, eventualmente presente a tergo della berlinese;
- Azione sismica (E): Accelerazione orizzontale e verticale, come definita al §6.

7.2 Combinazioni di carico

Ai fini della determinazione delle sollecitazioni di verifica, le azioni nominali, descritte al precedente paragrafo, vanno combinate nei vari Stati Limite di verifica previsti (SLE, SLU, SLV) in accordo a quanto previsto al §2.5.3 delle NTC18:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU): $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$ [2.5.1]
- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili: $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$ [2.5.2]
- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili: $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.3]
- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine: $G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.4]
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E: $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.5]
- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.6]

Figura 13. Combinazioni di carico ai sensi delle NTC18

7.3 Combinazioni di carico adottate

Sulla base della definizione dei carichi di cui sopra, in accordo a quanto prescritto dal DM 17/01/2018, sono state individuate le combinazioni di carico per le verifiche di stati limite ultimi in condizioni statiche e in condizioni sismiche.

- Combinazione fondamentale (SLU);
- Combinazione sismica (SLV).

In accordo con il § 6.5.3 di NTC18, le verifiche delle strutture di sostegno sono state condotte nei riguardi dei seguenti stati limite ultimi (SLU GEO e SLU STR):

- collasso del complesso opera-terreno;
- instabilità globale dell'insieme terreno-opera;
- sfilamento di uno o più ancoraggi;
- raggiungimento della resistenza in uno o più ancoraggi;
- raggiungimento della resistenza degli elementi strutturali.

Come prescritto dal DM 17/01/2018 per le strutture di sostegno flessibili, è stato adottato l'Approccio 1 con le due combinazioni di coefficienti parziali (tabelle 6.2.I, 6.2.II e 6.5.I del DM 17/01/2018):

- Combinazione 1: A1 + M1 + R1
- Combinazione 2: A2 + M2 + R1.

Il dimensionamento geotecnico dell'opera è stato condotto con la verifica di stati limite ultimi GEO, applicando la Combinazione 2 (A2+M2+R1).

Per le verifiche di stati limite ultimi STR l'analisi è stata condotta la combinazione 1 (A1+M1+R1).

Per le verifiche di stabilità globale è stato applicato l'Approccio 1 - Combinazione 2 (A2+M2+R2 – tab. 621, 621I e 681 del DM 17/01/2018).

Al fine di rispettare le richieste della Normativa in merito al modello geometrico di riferimento (§6.5.2.2 D.M. 17/01/2018) nel caso di opere in cui la funzione di sostegno è affidata alla resistenza del volume di terreno a valle dell'opera, la quota di valle è diminuita della quantità prevista, per opere vincolate:

$$\Delta_h = min(0,5m;10\%\Delta_t)$$

in cui Δt è la differenza di quota tra il livello inferiore di vincolo e il fondo scavo.

Per quanto riguarda lo Stato Limite di Esercizio (SLE), in tutti i casi, gli spostamenti dell'opera di sostegno e del terreno circostante devono essere valutati per verificarne la compatibilità con la funzionalità dell'opera e con la sicurezza e funzionalità e di manufatti adiacenti, anche a seguito di modifiche indotte sul regime delle acque sotterranee.

In presenza di manufatti particolarmente sensibili agli spostamenti dell'opera di sostegno, deve essere sviluppata una specifica analisi dell'interazione tra opere e terreno, tenendo conto della sequenza delle fasi costruttive.

Le verifiche in condizioni sismiche sono state condotte con riferimento allo stato limite ultimo di salvaguardia della vita (SLV), con riferimento alla configurazione finale dell'opera di sostegno. Per le verifiche in condizioni sismiche i coefficienti parziali sulle azioni e sui parametri geotecnici sono pari all'unità. Si adotta il metodo pseudostatico, calcolando il coefficiente sismico orizzontale secondo le prescrizioni della normativa (D.M. 17/01/2018):

$$k_h = \alpha \cdot \beta \cdot \left(\frac{a_{\max}}{g}\right)$$

dove:

- a_{max} è l'accelerazione orizzontale massima attesa al sito;
- α è il coefficiente di deformabilità (Figura 7.11.2 del D.M. 17/01/2018);

- β è il coefficiente di spostamento (Figura 7.11.3 del D.M. 17/01/2018).

Fig. 7.11.3 – Diagramma per la valutazione del coefficiente di spostamento β .

Con us=0.5% dell'altezza della paratia.

Per la definizione dell'azione sismica si rimanda al paragrafo §6. L'effetto del sisma sulle strutture di sostegno è ottenuto applicando un incremento di spinta del terreno valutato secondo la teoria di

Mononobe-Okabe, agente direttamente sulla paratia secondo una distribuzione uniforme sull'intera altezza dell'opera.

$$\Delta S_E = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot (K_{aE} - K_a)$$

dove:

- γ è il peso dell'unità di volume della formazione con la quale l'opera interagisce;
- H rappresenta l'altezza totale dell'opera (comprensiva del tratto infisso);
- K_{aE} e K_a rappresentano i coefficienti di spinta attiva in condizioni sismiche e statiche rispettivamente.

Per la valutazione della spinta passiva si assume $\alpha = 1$ (§7.11.6.3 del D.M. 17/01/2018). Il coefficiente sismico verticale, a_v, si assume pari a 0 (§7.11.6.3 del D.M. 17/01/2018).

I coefficienti di spinta attiva sono determinati attraverso la relazione di Mononobe (1929) e Okabe (1926). I coefficienti di spinta passiva sono determinati attraverso la relazione di Lancellotta (2007). L'angolo di attrito terreno/struttura, δ , si assume pari a 2/3 della resistenza al taglio del terreno naturale.

Le analisi sono state condotte mediante l'ausilio del codice di calcolo ParatiePlus (versione 21.1.0) e le combinazioni di carico analizzate sono le seguenti:

Figura 14. Combinazioni di carico ParatiePlus

7.4 Tiranti di ancoraggio

Gli Stati Limite Ultimi per questa tipologia di opere si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e del raggiungimento della resistenza dei materiali strutturali da cui sono composti.

Per il dimensionamento geotecnico, deve risultare verificata la condizione:

$$E_d \leq R_d$$

con specifico riferimento allo stato limite di sfilamento della fondazione dell'ancoraggio. La verifica di tale condizione è da effettuarsi con riferimento alla combinazione A1+M1+R3, utilizzando per i coefficienti parziali riportati nelle Tab. 6.2.I, Tab 6.2.II e Tab. 6.6.I del D.M. 17/01/2018.

La verifica a sfilamento della fondazione dell'ancoraggio si esegue confrontando la massima azione di progetto E_d con la resistenza di progetto R_{ad} , determinata applicando alla resistenza caratteristica R_{sk} i coefficienti parziali γ_R riportati nella Tab. 6.6.1, in funzione del tipo di ancoraggio.

Il valore caratteristico della resistenza allo sfilamento dell'ancoraggio è stato determinato utilizzando metodi analitici, pertanto il valore di questa deve essere assunto come il minore dei valori derivanti dall'applicazione dei fattori di correlazione ξ_{a3} e ξ_{a4} riportati in Tab. 6.6.II del D.M. 17/01/2018, in funzione del numero di verticali di indagine che consentono la completa identificazione del modello geotecnico del sottosuolo per il terreno interessato dalle fondazioni degli ancoraggi.

Nella valutazione analitica della resistenza allo sfilamento degli ancoraggi, inoltre, si fa riferimento ai coefficienti parziali di sicurezza del terreno M1 (pertanto non vengono ridotte le caratteristiche dei terreni in cui le fondazioni degli ancoraggi verranno realizzate).

La lunghezza libera del tirante, in assenza di evento sismico è definita dall'intersezione con un piano inclinato di (45° - $\phi/2$) sulla verticale, parallelo al piano passante per il piede della paratia e da esso distante 0.20 h.

In presenza di evento simico, con i tiranti attivi, secondo quanto proposto dal D.M. 17/01/2018 al §7.11.6.4, la lunghezza libera da considerare è:

$$L_e = L_s \left(1 + 1.5 \frac{a_{max}}{g} \right)$$

dove:

- L_e è la lunghezza libera dell'ancoraggio in condizioni sismiche;
- L_s è la lunghezza libera dell'ancoraggio in condizioni statiche;

 a_{max} è l'accelerazione orizzontale massima attesa al sito.

Le analisi sono state condotte mediante l'ausilio del codice di calcolo Paratie Plus.

7.5 Stabilità globale

In accordo con le indicazioni del D.M. 17/01/2018 § 6.8.2, le verifiche di sicurezza SLU sono state condotte secondo l'Approccio 1 - Combinazione 2 (A2+M2+R2), in cui A2 sono i coefficienti moltiplicativi delle azioni e M2 e R2 sono i coefficienti riduttivi dei parametri di resistenza dei materiali e della resistenza globale del sistema. Il rapporto tra R_d ed E_d dovrà risultare sempre maggiore o uguale a γ_R = 1.1 in condizioni statiche per assicurare che la verifica di sicurezza richiesta da normativa sia rispettata.

Per le verifiche sismiche si applicano gli stessi criteri ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici, per le resistenze di progetto con i valori dei coefficienti parziali indicati nel cap.6 del DM2018.

Per la valutazione della superficie di scorrimento critica (ed in generale di tutte le superfici di scorrimento) è stato utilizzato il metodo di Morgenstern & Price.

Le analisi e le verifiche di stabilità globale sono state condotte con il codice di calcolo Slide2.

8. MODELLAZIONE GEOTECNICA E STRUTTURALE

Come indicato al §6.5.3.1.2 della Circolare del Ministero delle Infrastrutture e dei Trasporti, il dimensionamento di tipo geotecnico e strutturale è svolto impiegando il codice di calcolo automatico Paratie Plus 2021.

Le verifiche di tipo geotecnico e di tipo strutturale scaturiscono da una stessa analisi d'interazione terreno-struttura impiegando, come indicato nel §6.2.4.1.3 delle Norme e nel precedente §C6.2.4.1, i valori caratteristici dei parametri geotecnici e delle azioni.

8.1 Modellazione con PARATIE PLUS

Alcune analisi finalizzate al dimensionamento delle strutture sono state condotte con il programma di calcolo "Paratie Plus 2021" della HarpaCeAS s.r.l. di Milano.

Lo studio del comportamento di un elemento di paratia inserito nel terreno viene effettuato tenendo conto della deformabilità dell'elemento stesso, considerato in regime elastico, e soggetto alle azioni derivanti dalla spinta dei terreni, dalle eventuali differenze di pressione idrostatiche, dalle spinte dovute ai sovraccarichi esterni e dalla presenza degli elementi di contrasto.

La paratia viene discretizzata con elementi finiti monodimensionali a due gradi di libertà per nodo (spostamento orizzontale e rotazione).

Il terreno viene schematizzato con molle a comportamento elasto-plastico che reagiscono elasticamente sino a valori limite dello spostamento, raggiunti i quali la reazione corrisponde, a seconda del segno dello stesso spostamento, ai valori limite della pressione attiva o passiva. Inoltre, è possibile modellare eventuali elementi di sostegno della paratia (tiranti, puntoni) con molle dotate di opportuna rigidezza (K= E*A/L).

Gli spostamenti vengono computati a partire dalla situazione di spinta "a riposo".

Figura 15. Modello di calcolo con Paratie Plus

Il terreno si comporta come un mezzo elastico sino a che il rapporto tra la tensione orizzontale efficace σ'_{h} e la tensione verticale efficace σ'_{v} risulta compreso tra il coefficiente di spinta attivo k_a e quello

passivo k_p, mentre quando il rapporto è proprio pari a uno dei due valori il terreno si comporta come un mezzo elasto-plastico.

Questo modello, nella sua semplicità concettuale, derivato direttamente dal modello di Winkler, consente una simulazione del comportamento del terreno adeguata agli scopi progettuali. In particolare, vengono superate le limitazioni dei più tradizionali metodi dell'equilibrio limite, non idonei a seguire il comportamento della struttura al variare delle fasi esecutive.

I parametri di deformabilità del terreno compaiono nella definizione della rigidezza delle molle. Per un letto di molle distribuite la rigidezza di ciascuna di esse, k, è data da:

$$k = E/L$$

Dove:

- E è il modulo di rigidezza del terreno (Young);
- L è la grandezza geometrica caratteristica.

La figura che segue mostra l'input delle strutture inserite nel programma di calcolo.

						Anteprima
		Nome	Micropiles 168.3sp10 s	\$0.35	Da utilizzare per	Sod
		Inerzia Equivalente		0.00004 m4	/m Solette (specificare il Dead Load 5 kN/m)	Set
		Area Equivalente	0.01420	8974773236 m2	/m Puntelli	
	Mat.	omogeneizzazione	S275		Puntoni	
	Geo	metria e materiali				
		Sezione personaliz	zzata			
		Materiale		 Inerzia 	m4/m Area m2/m	
	۲	Diaframma o Pali Calcestruzzo			Acciaio Materiale Profilo Passo Diametro Spessore Sot 0.01 m	
1		Palancole			Catalogo Palancelo	
J		Profilo				
J		Materiale	2	\$275	v	
	0	Tipo		βв	1	
J		Peso ner sunerfir	rie unitaria di narete	ßn	, 1	

Figura 16. Caratteristiche della paratia – Modellazione in Paratie

Il programma impiegato richiede, ovviamente, la definizione di parametri geotecnici degli strati in cui è stato suddiviso il terreno al contorno dell'opera e che è stata già riportata nei paragrafi precedenti.

Il problema dell'interazione terreno-struttura consiste nel valutare il raggiungimento dello stato di equilibrio del terreno al variare delle deformazioni della struttura in quanto la tensione orizzontale σ'_h

che lo scheletro solido del terreno esercita sulla parete verticale della struttura è funzione dello spostamento che essa subisce.

L'analisi di interazione ha inizio dallo stato indisturbato del terreno che è in equilibrio in condizioni litostatiche:

$$\sigma'_{h} = K_{0} \cdot \sigma'_{v}$$
 pressione a riposo

Secondo la relazione di Kulhawy [1989], il coefficiente di spinta a riposo dipende dalla resistenza del terreno e dal rapporto di sovraconsolidazione del terreno OCR secondo la seguente relazione:

$$K_0 = K_0^{nc} * OCR^m$$

dove:

- k_0^{nc} è il coefficiente di spinta a riposo per terreni normal-consolidati che secondo Jaky [1936] può essere posto pari a K₀ = (1 - sen ϕ');
- m è un parametro empirico, di solito compreso tra 0,40 e 0,70.

Con lo scavo, lo stato di equilibrio litostatico viene perturbato e le spinte variano in funzione dello spostamento.

La tensione σ'_a "attiva" sul paramento viene calcolata come:

$$\sigma'_a = K_a \cdot \sigma'_v - 2 \cdot c' \cdot (K_a)^{0,50}$$
 pressione attiva

dove:

- K_a = coefficiente di spinta attiva;
- σ'_v = tensione verticale efficace alla generica profondità;
- c' = coesione efficace.

Per il calcolo di K_a si fa riferimento alla formulazione proposta da Muller-Breslau (1924).

In condizioni statiche, Ka è funzione dell'angolo di attrito efficace dello scheletro solido ϕ' , dell'angolo di attrito fra struttura e terreno δ (pari a 2/3 ϕ') dell'inclinazione β del paramento di monte della struttura di sostegno e dell'inclinazione del terrapieno a tergo dell'opera.

La tensione σ'_p "passiva" sul paramento viene, parimenti, calcolata come:

$$\sigma'_{p} = K_{p} \cdot \sigma'_{v} + 2 \cdot c' \cdot (K_{p})^{0.50}$$
 pressione passiva

dove:

- K_p = coefficiente di spinta passiva.

Fra le varie formulazioni proposte per il calcolo di K_p si è scelta la formulazione di Lancellotta (2007) per tener conto della non planarità delle superfici di scorrimento.

Il *software* utilizzato è in grado, dunque, in funzione del campo di spostamento risultante nei vari step di analisi, di risalire all'entità della spinta in ogni fase a partire dal valore iniziale di spinta a riposo.

Le rigidezze delle molle schematizzanti i vari strati di terreno sono proporzionali ai loro moduli elastici.

Per strutture di sostegno alla pressione esercitata dallo scheletro solido deve essere sommata la pressione esercitata dall'acqua assumendo schemi di filtrazione idonei in funzione delle condizioni stratigrafiche ed al contorno. In presenza di falda, va ovviamente aggiunta la pressione idrostatica che alla generica profondità, può essere valutata come di seguito:

 $u = \gamma_w \cdot z$

In definitiva, l'espressione generale per il calcolo della pressione verticale efficace alla generica profondità z, in caso di eventuale presenza di sovraccarichi sul piano limite e falda è la seguente:

$$\sigma'_v = \gamma \cdot (z - h_w) + \gamma' \cdot h_w + q$$

Essendo:

- γ: peso di volume naturale del terreno;
- γ': peso di volume del terreno immerso;
- h_w: altezza di falda rispetto al piano orizzontale posto a quota z;
- q: intensità del sovraccarico presente su piano limite.

9. PARATIA DI MICROPALI CON TIRANTI

Nel presente capitolo si riporta il dimensionamento della paratia di micropali multitirantata prevista a sostegno degli scavi necessari alla realizzazione del parcheggio. Al fine di tener conto dell'incertezza dell'andamento del substrato roccioso lungo lo sviluppo della paratia, sono state condotte analisi con diverse profondità; di seguito si riporta il dimensionamento della condizione più gravosa sulla quale è stato tarato l'intervento lungo l'intera area.

L'analisi dimensionante è stata svolta considerando un'altezza di scavo nel materiale di riporto pari a 6.8m. L'approfondimento in roccia è stato ipotizzato pari a 2m al fine di garantire l'incastro al piede dei micropali.

Figura 17.Sviluppata paratia con indicazione delle sezioni di calcolo

Le verifiche strutturali sono state condotte considerando le massime sollecitazioni agenti.

9.1 Sezione 1

La sezione oggetto di studio è stata selezionata in corrispondenza della paratia caratterizzata dalla altezza di scavo pari a 6.8m.

Sono di seguito riportate le principali caratteristiche dell'opera di sostegno e del modello geotecnico utilizzati per le analisi di verifica.

9.1.1 Modello numerico

La seguente figure mostra la sezione simulata; si può osservare come l'inclinazione del pendio a monte dell'opera sia stata modellata mediante l'applicazione di un carico fittizio equivalente, su un piano campagna simulato orizzontale.

Figura 18.Sezione 1 – modello di calcolo

Sono di seguito descritte le principali caratteri	stiche della struttura	e del modello geo	otecnico per le
analisi di verifica.			

Tipologia struttura di sostegno	Pali Ø250mm ad interasse 0.35m armati con tubolare 168.3 sp.10mm					
Altezza totale paratia	H _{tot} = 8.8 m					
Altezza di scavo	H = 6.8 m					
Altezza di scavo di calcolo (DM 2018 § 6.5.2.2)	H ₁ = H + 0.5m = 7.3 m					
Inclinazione del piano campagna a valle	0°					
Sovraccarichi permanenti a monte	Carico fittizio variabile equivalente alla pendenza del p.c.					
Sovraccarichi permanenti a valle	-					
Sovraccarichi variabili a monte	-					
Sovraccarichi variabili a valle	-					

Tabella 6. Sezione 1 – caratteristiche geometriche

Al fine di rispettare le indicazioni della Normativa la quota di valle deve essere incrementata di una quantità pari al minore dei seguenti valori: 10% dell'altezza di terreno da sostenere nel caso di opere a sbalzo; minimo tra il 10% della differenza di quota fra il livello inferiore di vincolo e il fondo scavo nel caso di opere vincolate oppure 0.5 m. Cautelativamente è stato assunto un incremento del livello di fondo scavo pari a 0.5m

I parametri geotecnici adottati nelle analisi variano a seconda della combinazione di riferimento adottata in considerazione della specifica verifica prevista dal DM 2018 così come riportato nel prospetto che segue.

COMBINAZIONE STATICA												
Strato	Unità geotecnica	Comb.	Y	c'	φ'	δ/φ	E'	Eur	k _o	k _{ah}	k _{ph}	τ _{ak}
[n]	[-]	[-]	[kN/m³]	[kPa]	[°]	[-]	[kPa]	[kPa]	[-]	[-]	[-]	[kPa]
1	Riporto	M1	21,0	0,0	34,0	2/2	2/3 9000	27000	0,441	0,235	6,062	100
1		M2		0,0	28,4	2/3			0,525	0,300	4,175	
2	Ghiaia/Sabbia limosa	М1	21.0	4,0	33,0	2/2	10000	22000	0,455	0,245	5,655	100
2		M2	3,2	27,5	2/3	16000	32000	0,539	0,312	3,950	100	
2	Roccia	M1 60,0	60,0	42,0	2/2	500000	500000	0,331	0,162	11,348	250	
3		М2	20,5	48,0	35,8	2/3	500000	500000	0,416	0,217	6,884	230

Tabella 7. Sezione 1 – Parametri geotecnici di calcolo

	COMBINAZIONE SISMICA - NTC18											
Strato	Unità geotecnica	Comb.	Categoria sottosuolo	Norma	α _{attivo}	$\alpha_{passivo}$	Us	в	k h, attivo	k h, passivo	k ahE	k _{phE}
[n]	[-]	[-]	[-]	[-]	[-]	[-]	[m]	[-]	[-]	[-]	[-]	[-]
1	Riporto	М1	A	NTC18	1,000	1	0,044	0,625	0,077	0,077	0,278	-
1											-	3,378
2	Ghiaia/ Sabbia limosa	Ghiaia/ Iimosa M1	1 A	NTC18	1 000	0 1	1 0,044	4 0,625	0,077	0,077	0,290	-
2					1,000						-	3,236
2	Roccia	Dessis 141	41 4	NTC10	8 1,000	1	0,044	044 0,625	0,077	0,077	0,198	-
3		κοτεία ΝΙ		NIC18		1 000					-	4,854

Tabella 8. Parametri per il calcolo dell'azione sismica

L'incremento di spinta del terreno, dovuto all'azione sismica, valutato secondo la teoria di Mononobe-Okabe e agente direttamente sulla paratia secondo una distribuzione uniforme sull'intera altezza dell'opera è pari a:

Combinazione	Δ51
SLV STR	8.5 kPa/m
SLV GEO	9.88 kPa/m

Fasi di calcolo

L'analisi è stata articolata nelle seguenti fasi:

- STAGE 1. Condizione geostatica, carichi permanenti del versante lato monte;
- STAGE 2. Inserimento della paratia di micropali;
- STAGE 3. Scavo di ribasso fino a -2.5m da piano campagna;
- STAGE 4. Installazione primo ordine di tiranti a -1.5m da piano campagna;
- STAGE 5. Scavo di ribasso fino a -5.5m da piano campagna;
- STAGE 6. Installazione secondo ordine di tiranti a -4.5m da piano campagna;
- STAGE 7. Scavo di ribasso fino a -9m da piano campagna;
- STAGE 8. Esecuzione del sovrascavo -7.3m da piano campagna;
- STAGE 9. Applicazione dell'azione sismica SLV STR;
- STAGE 10. Applicazione dell'azione sismica SLV GEO.

9.1.2 Risultati delle analisi e delle verifiche

I risultati delle analisi sono di seguito descritti ed illustrati.

• Verifica del complesso opera terreno

La verifica è finalizzata a garantire il corretto dimensionamento dell'opera con particolare riferimento alla profondità di infissione della paratia, sia in condizioni statiche (SLU GEO) che sismiche (SLV GEO). A tale scopo, nei prospetti che seguono, sono riportati gli output relativi all'analisi statica e sismica in termini di percentuale di spinta passiva mobilitata.

Figura 19. Massimi rapporti di mobilitazione spinta passiva SLU GEO

Figura 20. Massimi rapporti di mobilitazione spinta passiva SLV GEO

La percentuale di spinta passiva mobilitata, all'ultimo stage, è pari al 34% in condizione statica e al 22% in condizione sismica.

Dal punto di vista degli spostamenti, come si può osservare dalla seguente figura, gli spostamenti massimi misurati allo SLE e allo SLV sono millimetrici e compatibili con la funzionalità dell'opera.

Figura 21. Inviluppo deformata della paratia allo SLE

Figura 22. Deformata della paratia allo SLV

• Verifica stabilità globale complesso opera terreno

Per le verifiche di stabilità ci si è avvalsi della funzionalità VSP interna al software di calcolo di Paratie Plus. Le verifiche sulla stabilità sono state condotte con il metodo dell'equilibrio limite implementato con la formulazione di Morgenstern & Price.

Considerato lo scopo dell'analisi, le superfici di scorrimento indagate sono definite in modo tale da non intersecare l'opera di sostegno evitando di verificare superfici di scivolamento non rappresentative della condizione reale.

Sono state analizzate sia la condizione statica, sia la condizione sismica. Nelle figure di seguito si riportano le superfici critiche di scorrimento nei due casi analizzati.

Figura 23. Sezione 1 – modello di calcolo e superficie di scorrimento critica SLU GEO

La verifica risulta soddisfatta essendo FS=3.256>1.1

Figura 24.Sezione 1 -modello di calcolo e superficie di scorrimento critica SISMICA GEO

La verifica risulta soddisfatta essendo FS=3.952>1.1

• Caratteristiche dei tiranti

Nel prospetto che segue, per ciascun ordine di tiranti, sono riportate le principali caratteristiche geometriche e strutturali.

Si sottolinea che la lunghezza libera del tirante è da intendersi comprensiva dell'incremento valutato in condizioni sismiche secondo la formulazione proposta dal DM 2018 in funzione della massima accelerazione sismica di progetto.

	Input geometrici e di calcolo - Tiranti di ancoraggio												
Ordine	z da t.p.	Dp	n tr	Atr	L L,progetto	Lbulbo	L _{tot}	i	α	Pre-tiro	Comb.	Ns,d / m	Ns,d
[-]	[m]	[<i>mm</i>]	[-]	[mm ²]	[m]	[m]	[m]	[m]	[°]	[kN]	[-]	[kN/m]	[kN]
1	1,5	160	3	139	6,0	10,0	16,0	2,1	20	200	SLU	130,3	274
2	4,5	160	3	139	5,0	5,0	10,0	2,1	20	200	SLU	131,5	276
1	1,5	160	3	139	6,0	10,0	16,0	2,1	20	200	SLV	103,5	217
2	4,5	160	3	139	5,0	5,0	10,0	2,1	20	200	SLV	105,7	222

D_p = diametro di perforazione della fondazione del tirante;

n_{tr} = numero di trefoli per tirante;

Atr = area del singolo trefolo;

*L*_p = lunghezza libera del tirante

*L*_A = lunghezza della fondazione del tirante

i = interasse longitudinale dei tiranti

 α = inclinazione sull'orizzontale del tirante

Tabella 9. Sezione 1 – Caratteristiche geometriche dei tiranti

Figura 25. Sezione 1 – Inviluppo del tiro nei tiranti in condizioni statiche SLU STR

Figura 26.Sezione 1 – Sforzo assiale nei tiranti in condizioni sismiche in fase finale SLV STR

• Verifica a sfilamento della fondazione dei tiranti

Per la verifica a sfilamento della fondazione dei tiranti, in considerazione della tecnologia realizzativa e delle caratteristiche geotecniche del mezzo al contorno, la resistenza caratteristica a sfilamento all'interfaccia bulbo di ancoraggio – terreno è stata valutata secondo le indicazioni di Bustamante e Doix '85 e Viggiani '99.

Nello specifico per la resistenza a sfilamento dell'interfaccia bulbo di fondazione-terreno, τak , per i tiranti ricadenti nello strato caratterizzato di ghiaia e sabbia limosa (Cappellaccio) viene assunto un valore caratteristico pari a 100 kPa, mentre per i tiranti ricadenti nei "Calcari di Monte Antola" è stato assunto un valore pari a 250k kPa.

La resistenza a sfilamento di progetto è determinata attraverso la seguente relazione:

$$N_{R,ad} = \frac{N_{R,ak}}{\gamma_{Ra,p}} = \frac{\pi \cdot D_p \cdot \alpha \cdot \tau_{ak} \cdot L_a}{\gamma_{Ra,p} \cdot \xi}$$

dove:

 $N_{R,ad}$ è la resistenza a sfilamento di progetto dell'interfaccia bulbo di fondazione-terreno;

 D_p è il diametro di perforazione della fondazione del tirante;

 α è un coefficiente correttivo che tiene conto della tecnologia realizzativa dell'ancoraggio e del contesto geotecnico.

 τ_{ak} è la tensione resistente a sfilamento caratteristica dell'interfaccia bulbo di fondazione-terreno;

 L_a è la lunghezza della fondazione del tirante;

 $\gamma_{Ra,p}$ è il coefficiente parziale per la resistenza degli ancoraggi (R3); si considera il valore del coefficiente parziale relativo agli ancoraggi permanenti;

 ξ è un fattore di correlazione che dipende dal numero di profili di indagine geotecnica disponibili per la determinazione della resistenza caratteristica τ_{ak} .

I valori di α possono essere ricavati dalla tabella riportata nella figura che segue, in funzione del tipo di terreno e delle modalità di iniezione (semplici o ripetute). Nella stessa tabella sono indicati i corrispondenti volumi minimi di miscela da iniettare.

Terreno	Valor	idiα	Quantità minima di miscela
	IRS IGU		consigliata
Ghiaia	1,8	1,3 - 1,4	1,5 V _S
Ghiaia sabbiosa	1,6 - 1,8	1,2 - 1,4	1,5 Vs
Sabbia ghiaiosa	1,5 - 1,6	1,2 - 1,3	1,5 V _S
Sabbia grossa	1,4 - 1,5	1,1 - 1,2	1,5 V _S
Sabbia media	1,4 - 1,5	1,1 - 1,2	1,5 V ₈
Sabbia fine	1,4 - 1,5	1,1 - 1,2	1,5 V ₈
Sabbia limosa	1,4 - 1,5	1,1 - 1,2	IRS: (1,5 - 2)V ₈ ; IGU: 1,5 V ₈
Limo	1,4 - 1,6	1,1 - 1,2	IRS: 2V ₈ ; IGU: 1,5V ₈
Argilla	1,8 - 2,0	1,2	IRS: (2,5 - 3)V ₈ ; IGU: (1,5-2)V ₈
Marne	1,8	1,1 - 1,2	(1,5 - 2)V ₈ per strati compatti
Calcari marnosi	1,8	1,1 - 1,2	
Calcari alterati o fratturati	1,8	1,1 - 1,2	$(2 - 6)V_s$ o più per strati fratturati
Roccia alterata e/o fratturata	1,2	1,1	$(1,1-1,5)V_{S}$ per strati poco fratturati $2V_{S}$ o più per strati fratturati

Figura 27. Valori di α in funzione del tipo di terreno e delle modalità di iniezione

La verifica viene condotta nel rispetto della seguente disuguaglianza:

$$N_{R,ad} \ge N_{S,d}$$

dove NS,d rappresenta il valore dell'azione sollecitante sui tiranti.

Nella tabella che segue è riassunto il calcolo per la determinazione di NR,ad per le verifiche dei tiranti e l'esito della verifica.

			Ver	ifica a sf	ilamento	della f	onda	zione d	ei tirant	i		
Ordine	D_p	α	Strato	Tak	Lbulbo	₽ Ra,p	ξ	N R,ak	N R,ad	Comb.	Ns,d	TL
[-]	[<i>mm</i>]	[-]	[-]	[kPa]	[m]	[-]	[-]	kN	kN	[-]	[kN]	[%]
1	160	1,6	2	100	10	1,2	1,8	447	372	SLU	274,34	74%
2	160	1,2	3	250	5	1,2	1,8	419	349	SLU	276,05	79%
1	160	1,6	2	100	10	1,2	1,8	447	372	SLV	217,37	58%
2	160	1,2	3	250	5	1,2	1,8	419	349	SLV	221,93	64%

Tabella 10. Sezione 1 – Verifiche a sfilamento della fondazione dei tiranti

• Verifica strutturale dei tiranti

La resistenza a trazione di calcolo dei tiranti è valutata secondo la seguente relazione:

$$N_{R,pd} = \frac{f_{p(1)k} \cdot A_{tr} \cdot n_{tr}}{\gamma_S}$$

dove:

 $f_{p(1)k}$ è la resistenza elastica dell'acciaio armonico alla deformazione dell'1%;

 A_{tr} è l'area del singolo trefolo;

 n_{tr} è il numero di trefoli per tirante;

 γ_S è il coefficiente parziale dell'acciaio.

La verifica viene condotta nel rispetto della seguente disuguaglianza:

$$N_{R,pd} \ge N_{S,d}$$

Nella tabella che segue è riassunto il calcolo per la determinazione di NR,pd per le verifiche dei due ordini di tiranti e l'esito della verifica.

			Verifica	a struttur	ale dei tir	anti			
Ordine	$f_{p(1)k}$	A _{tr}	n tr	γs	N R,pk	N _{R,pd}	Condiz.	N _{s,d}	TL
[-]	[MPa]	[mm ²]	[-]	[-]	kN	kN	[-]	[kN]	[%]
1	1670	139	3	1,15	696	606	SLU	274	45%
2	1670	139	3	1,15	696	606	SLU	276	46%
1	1670	139	3	1,15	696	606	SLV	217	36%
2	1670	139	3	1,15	696	606	SLV	222	37%

Tabella 11. Sezione 1 – Verifiche strutturali dell'armatura dei tiranti

Infine, nel rispetto della gerarchia delle resistenze, è necessario verificare che la resistenza caratteristica al limite di snervamento del tratto libero sia sempre maggiore della resistenza caratteristica a sfilamento della fondazione dell'ancoraggio.

Gerarchia delle resistenze										
Ordine N _{R,ak} N _{R,pk} Verifica										
[-]	kN	kN	[-]							
1	447	696	ok							
2	419	696	ok							
1	447	696	ok							
2	419	696	ok							

$N_{R,pk}$	>	$N_{R,ak}$
11, p.10		11,0010

Tabella 12. Sezione 1 – Verifica di gerarchia delle resistenze

• Verifiche strutturali delle travi di ripartizione

Le caratteristiche della sollecitazione sono determinate modellando gli elementi strutturali oggetto di verifica alla stregua di travi continue su più appoggi; la luce delle campate è data dall'interasse dei tiranti ed il carico, uniformemente distribuito, è determinato ripartendo le reazioni offerte dagli ancoraggi, ottenute del modello di calcolo dell'opera di sostegno. Definito Ns,d il massimo tiro di calcolo corrispondente all'i-esimo ordine di tiranti, il suddetto carico è così calcolato: qsd=Ns,d/i (con i interasse tiranti).

Figura 28. Trave di ripartizione – schema statico

Secondo tale modello le massime azioni di calcolo sull'elemento strutturale saranno:

Ms,d =
$$\frac{1}{10} q_{sd} l^2$$

Ts,d = $0.5 q_{sd} l$

Le travi di ripartizione sono costituite da profili metallici accoppiati HEB180 (acciaio S275) per tutti gli ordini di tiranti.

	Ver	rifiche stru	ıtturali de	lle tr	avi di	ripart	izione	e - Calcolo	elastic	0			
Elem.strutt.	N° appoggi	Condiz.	Ns,d / m	i	N travi	M Ed	V Ed	W _x = W _{el}	Av	σ max	Tmax	O id	Fs
[-]	[-]	[-]	[kN/m]	[m]	[-]	[kNm]][kN]	[m³]	[m²]	[MPa]	[MPa]	[MPa]	[-]
2 X HE 180 B	2	SLU	131	2,1	2	72	137	0,0004	0,002	169	68	42411	1,62
2 X HE 180 B	2	SLU	131	2,1	2	72	138	0,0004	0,002	170	68	42939	1,60
2 X HE 180 B	2	SLV	104	2,1	2	57	109	0,0004	0,002	134	54	26625	2,58
2 X HE 180 B	2	SLV	106	2,1	2	58	111	0,0004	0,002	137	55	27753	2,47

Tabella 13. Sezione 1 – Verifiche travi di ripartizione

• Verifiche strutturali dei micropali della paratia

Nei prospetti che seguono, per le combinazioni STR statica e sismica, si riportano gli andamenti delle sollecitazioni di momento e taglio agenti sulla paratia sottoforma di inviluppo in modo da racchiudere tutte le fasi di calcolo.

Figura 29. Sezione 1 – Risultati dell'analisi SLU STR: Caratteristiche della sollecitazione

 Figura 30. Sezione 1 – Risultati dell'analisi SLV STR: Caratteristiche della sollecitazione

È dunque possibile condurre le verifiche strutturali dei micropali. Si sottolinea che, a favore di sicurezza, è stato trascurato lo sforzo normale di compressione agente sui pali.

Si riportano nel seguito i risultati delle verifiche:

		Ve	erifich	e struttu	ırali m	icropalo -	Calcolo	o plast	tico			
Comb.	M_{Ed}	V_{Ed}	i	M_{Ed}	V_{Ed}	$W_x = W_{pl}$	A_{v}	Vc,Rd	ρ	M _{y,V,Rd}	Fs (M)	Fs (V)
[-]	[kNm/m]	[kN/m]	[m]	[kNm]	[kN]	[m³]	[cm²]	[kN]	[-]	[kNm]	[-]	[-]
SLU	50,41	72,39	0,35	17,64	25,3	0,0003	32	479	0,00	66	3,72	>10
SLV	42,66	64,11	0,35	14,93	22,4	0,0003	32	479	0,00	66	4,40	>10

Tabella 14. Sezione 1 – Sollecitazioni massime SLU e SLV

9.2 Verifica cordolo di testata in calcestruzzo

Il cordolo di testata della berlinese non è considerato un elemento strutturale, come si evince dal modello di calcolo, e, pertanto, è omessa la verifica di codesta struttura. A favore di sicurezza, il quantitativo di armatura presente nel cordolo, soddisfa comunque il minimo prescritto dalla normativa vigente.

10. VERIFICA SCAVO IN ROCCIA

I sostegni in roccia, previsti per lo scavo del parcheggio, sono dimensionati di seguito considerando tre facce rocciose (Ovest, Sud ed Est). Lo scavo in roccia è previsto verticale con inclinazione di 90°.

Figura 31. Facce rocciose analizzate – Planimetria

Figura 32.Scavo in roccia – Sezione trasversale

Fronte	Immersione	Inclinazione
Ovest	69°	90°
Sud	356°	90°
Est	288°	90°

Tabella 15. Immersione e inclinazione – Fronti rocciosi

Per l'identificazione dei possibili cinematismi sfavorevoli per la stabilità, si è fatto riferimento in maniera cautelativa allo studio geomeccanico del fronte roccioso eseguito dal Dipartimento di Scienze della terra e dell'Ambiente dell'Università degli Studi di Pavia e riportata nella Relazione Geologica allegati al presente progetto dove sono stati identificati 4 sistemi principali di discontinuità richiamati al §5 per i Calcari di Monte Antola.

La resistenza a taglio delle discontinuità è stata estimata e modellata mediante il criterio di rottura di Barton (1976):

$$\tau = \sigma_n \tan \left(JRC \cdot \log 10 \left(\frac{JCS}{\sigma_n} \right) + \varphi_R \right)$$

Dove,

 σ_n , è la tensione normale;

JRC, è un coefficiente che tiene conto della scabrezza;

JCS, è la resistenza a compressione monoassiale della litologia;

 φ_R , è l'angolo di attrito residuo.

Non avendo informazioni disponibili in questa fase progettuale sulle caratteristiche di resistenza a taglio dei principali sistemi di discontinuità si è fatto riferimento all'articolo di Falcioni et al. (1995), realizzato in collaborazione con l'Università di Genova e l'Ente Ferrovie dello Stato. Come riportato in tale articolo per le marne calcaree del Monte Antola, il coefficiente JRC è compresso tra 3.2 e 8.2 con un valore medio di 6.4, si è assunto per tanto un valore di **JRC=6.4**.

L'angolo di attrito residuo è stato assunto pari a $\varphi_R=22^\circ$, tenendo in conto che tale valore è di solito molto prossimo a quello di base (Falcioni et al. (1995)), e considerando quanto riportato nella Relazione Geologica per l'angolo di attrito di base.

Per il coefficiente di JCS, per rocce fratturate si può assumere un rapporto di JCS/ $\sigma_c = 1/4$ (Wines et al. (2003)), considerando l'intervallo di σ_c compresso tra 5MPa e 35MPa (valori riportati nella caratterizzazione geotecnica del progetto lungo l'intera linea per le marne calcaree del Monte Antola) si è assunto il valore medio pari a $\sigma_c = 20$ MPa, ottenendo per il coefficiente JCS un valore di **JCS= 5MPa**.

Si è avvalsi del software Dips (Rocscience Inc.) per effettuare un'analisi dei possibili cinematismi che si generano sui tre diversi fronti, conoscendo la sua orientazione media rispetto alla reale posizione delle discontinuità. I risultati dell'analisi sono presentati di seguito adottando per i Calcari di Monte Antola, un angolo di attrito base pari a 22 gradi (riportato nella Relazione Geologica). Dopodiché una verifica di stabilità è stata eseguita per definire il tipo di sostegno.

Il calcolo è eseguito mediante il D.M. 17/01/2018, Approccio 1 - Combinazione 2: (A2+M2+R2), con coefficiente parziale $y_R = 1, 1$. È stata analizzata sia la condizione statica che quella sismica.

In generale si è ipotizzato cautelativamente blocchi di altezza media di 6.6m, corrispondenti alla profondità media dello scavo in roccia (valore da verificare nelle successive fasi progettuali dovuto all'incertezza del livello della roccia).

10.1 Fronte ovest

10.1.1 Identificazione dei possibili cinematismi

Lo scavo nel fronte "Ovest" è eseguito lungo un piano con inclinazione di 90° e immersione di 69°. I possibili cinematismi sono presentati nelle seguenti figure.

Figura 33. Scivolamento planare – Fronte Ovest

Figura 34. Scivolamento dei cunei – Fronte Ovest

Figura 35. Ribaltamento di cunei – Fronte Ovest

Figura 36. Ribaltamento flessurale – Fronte Ovest

Lo scivolamento dei cunei (interessato dall'intersezione di F1-F3) e il ribaltamento flessurale (S0) sono stati identificati come i meccanismi di crollo più critici.

10.1.2 Verifica stabilità fronte roccioso in assenza di interventi

• Scivolamento dei cunei

Lo scivolamento dei cunei è stato analizzato considerando i giunti F1 e F3, come identificato dall'analisi con DIPS. L'analisi è stata effettuata con SWedge (Rocscience Inc.).

Figura 37. Analisi di stabilità – Scivolamento di cunei – F1 e F3 – SLU

La verifica risulta soddisfatta in assenza di interventi essendo FS=1.39>1.1

Figura 38. Analisi di stabilità – Scivolamento di cunei – F1 e F3 – SLV

La verifica risulta soddisfatta in assenza di interventi essendo FS=1.43>1.1

• Ribaltamento flessurale

Il ribaltamento flessurale è stato analizzato considerando il giunto SO, come identificato dall'analisi con DIPS. L'analisi è stata effettuata con RocTopple (Rocscience Inc.).

Per l'analisi è stata considerata la spaziatura media dichiarata nella Relazione Geologica per il set di discontinuità S0, pari a 3.2m.

Figura 40. Analisi di stabilità – Ribaltamento flessurale – S0 – SLV +

Dall'analisi su RocTopple si evince che, considerando la spaziatura media del giunto S0 pari a 3.2m, il ribaltamento flessurale non si sviluppa. Dalla Figura 39 e Figura 40, si osserva in giallo il blocco instabile, corrispondente ad un meccanismo di scivolamento planare, cinematismo che non può svilupparsi poiché il piano su cui avviene lo scivolamento deve avere una direzione parallela o quasi parallela (entro circa ±20°) alla superficie del versante. Considerando dunque il giunto S0, con un'inclinazione di 47°, il criterio sopra descritto non risulta soddisfatto.

10.1.3 Sostegni in roccia

Per il fronte roccioso ad ovest, non si sviluppano meccanismi di instabilità, si prevede dunque un minimo di chiodi in roccia di diametro φ 28 con lunghezza 4.5m e maglia di 2.5mx2.5m dovuto all'incertezza nelle condizioni di fratturazione della roccia.

Si prevede anche una rete elettrosaldata su tutta l'estensione del fronte ovest per prevenire distacchi di blocchi di piccole dimensioni.

10.1 Fronte Sud

10.1.1 Identificazione dei possibili cinematismi

Lo scavo nel fronte "Sud" è eseguito lungo un piano con inclinazione di 90° e immersione di 356°. I possibili cinematismi sono presentati nelle seguenti figure.

Figura 41. Scivolamento planare – Fronte Sud

Figura 42. Scivolamento dei cunei – Fronte Sud

 Symbol
 Feature

 0
 Polar Vacans

 0
 Oldal Interaction

 Kinematic Analysis
 Oracle Tassing

 Stope Dip
 30

 Stope Dip
 301

 Friction Angle
 27'

 Lateral Limits
 20'

 Direct Tagging (tetrencion)
 0
 6
 0.00%

 Obigan Tagging (tetrencion)
 1
 4
 200%

 Vector Count
 414 Exeminities
 1
 4
 200%

 Intersection Mode
 Pate Vaccas
 Lateral Limits
 1
 4
 200%

 Intersection Education
 0
 6
 0.00%
 3
 4
 200%

 Vector Count
 414 Exeminities
 1
 4
 200%
 3

 Intersection Education
 0.00%
 0.00% for Name
 1
 4
 200%

 Point Mode
 Pate Vaccas
 Lateral Limits
 1
 4
 200%

 Heating Area
 Lateral Limits
 2
 2
 2
 2
 2
 2
 2
 2</td

Figura 43. Ribaltamento di cunei – Fronte Sud

Figura 44. Ribaltamento flessurale – Fronte Sud

Lo scivolamento planare (F3) e lo scivolamento dei cunei (interessato dall'intersezione di F1-F2, F1-F3 e F2-F3) sono stati identificati come i meccanismi di crollo più critici.

10.1.2 Verifica stabilità fronte roccioso in assenza di interventi

• Scivolamento planare

Lo scivolamento planare è stato analizzato considerando il set di discontinuità F3, come identificato dall'analisi con DIPS. L'analisi è stata effettuata con RocPlane (Rocscience Inc.).

Figura 45. Analisi di stabilità – Scivolamento planare – F3 – SLU

La verifica risulta non soddisfatta in assenza di interventi essendo FS=0.05<1.1

La verifica risulta non soddisfatta in assenza di interventi essendo FS=0<1.1

• Scivolamento dei cunei

Lo scivolamento dei cunei è stato analizzato considerando i giunti F1-F2, F1-F3 e F2-F3, come identificato dall'analisi con DIPS. L'analisi è stata effettuata con SWedge (Rocscience Inc.).

- <u>F1-F2</u>

Figura 47. Analisi di stabilità – Scivolamento di cunei – F1 e F2 – SLU

La verifica risulta soddisfatta in assenza di interventi essendo FS=4.53>1.1

Figura 48. Analisi di stabilità – Scivolamento di cunei – F1 e F2 – SLV

La verifica risulta soddisfatta in assenza di interventi essendo FS=4.15>1.1

-

<u>F1-F3</u>

Figura 49. Analisi di stabilità – Scivolamento di cunei – F1 e F3 – SLU

La verifica risulta non soddisfatta in assenza di interventi essendo FS=0.47<1.1

Figura 50. Analisi di stabilità – Scivolamento di cunei – F1 e F3 – SLV

La verifica risulta non soddisfatta in assenza di interventi essendo FS=0.51<1.1

-

F2-F3

Figura 51. Analisi di stabilità – Scivolamento di cunei – F2 e F3 – SLU

La verifica risulta non soddisfatta in assenza di interventi essendo FS=0.05<1.1

Figura 52. Analisi di stabilità – Scivolamento di cunei – F2 e F3 – SLV

La verifica risulta non soddisfatta in assenza di interventi essendo FS=0.0068<1.1

10.1.3 Sostegni in roccia

Gli interventi di stabilizzazione nel fronte roccioso a sud sono presentati di seguito. Per le seguenti verifiche sono stati considerati dei chiodi di diametro ϕ 28 con lunghezza 4.5m, inclinazione di 10° e maglia di 2.5mx2.5m con le seguenti caratteristiche:

Chiodi DYWIDAG

ati tecnici hiodi <i>GEWI</i> ®	ti tecnici iodi <i>GEWI</i> ® / Bulloni da roccia, Barre B500B & S555/700												
Diametro nominale Ø	Tensione snerv. / rottura f _{0,2k} /f _{tk}	Sezione trasversale A	Carico snervamento F _{yk}	Carico ultimo F _{tk}	Peso	Peso DCP	Omolog.						
[mm]	[N/mm²]	[mm²]	[kN]	[kN]	[kg/m]	[kg/m]							
16	500/550	201	101	111	1.58	5.2	0						
20	500/550	314	157	173	2.47	5.9	0						
25	500/550	491	245	270	3.85	7.0	0						
28	500/550	616	308	339	4.83	8.6	0						
32	500/550	804	402	442	6.31	9.5	0						
40	500/550	1,257	628	691	9.86	13.6	0						
50	500/550	1,963	982	1,080	15.41	21.0	0						
63.5	555/700	3,167	1,758	2,217	24.86	32.4	0						

Figura 53. Chiodi DYWIDAG – Parametri

Considerando tale maglia (2.5mx2.5m), il numero di chiodi in 1m² sono 0.16chiodi/m².

Sui software di calcolo (RocPlane e SWedge) è stata applicata una forza equivalente alle caratteristiche del chiodo sopra descritti.

Si prevede anche una rete elettrosaldata su tutta l'estensione del fronte sud per prevenire distacchi di blocchi di piccole dimensioni.

• Scivolamento planare

Per la verifica dello scivolamento planare considerando la famiglia di discontinuità F3, la forza risulta applicata in una estensione di $6.6m^2/m$. Considerando 0.16chiodi/m² e il carico di snervamento dei ϕ 28 pari a F_{yk}=308 kN, è stata applicata una forza pari a:

F=F_{yk} x numero di chiodi = (308 kN) x (6.6 m2/m x 0.16 chiodi/m²) = 308 kN/m

La verifica risulta soddisfatta essendo FS=4.45>1.1

Figura 55. Analisi di stabilità – Scivolamento planare – F3 – SLV

La verifica risulta soddisfatta essendo FS=5.78>1.1

• Scivolamento dei cunei

Per la verifica dello scivolamento di cunei è stato considerato il meccanismo più critico (F1-F3), la forza risulta applicata in una estensione di 8.26m² (Area cuneo instabile nel fronte di scavo). Considerando 0.16chiodi/m² e il carico di snervamento dei φ 28 pari a F_{yk}=308 kN, è stata applicata una forza pari a:

 $F=F_{yk} x$ numero di chiodi = (308 kN) x (8.26 m2 x 0.16 chiodi/m²) = 407 kN

Figura 56. Analisi di stabilità – Scivolamento di cunei – F1 e F3 – SLU

La verifica risulta soddisfatta essendo FS=1.3>1.1

Figura 57. Analisi di stabilità – Scivolamento di cunei – F1 e F3 – SLV

La verifica risulta soddisfatta essendo FS=1.3>1.1

10.2 Fronte Est

10.2.1 Identificazione dei possibili cinematismi

Lo scavo nel fronte "Est" è eseguito lungo un piano con inclinazione di 90° e immersione di 288°. I possibili cinematismi sono presentati nelle seguenti figure.

Figura 58. Scivolamento planare – Fronte East

Figura 59. Scivolamento dei cunei – Fronte East

ol Feature

Kinematic Analysis Slope Dip Slope Dip Direction on Angle Lateral Li

Base Plane (All) Plot Mode Vector Count resection Mode sections Count Hemisphere Projection

Critical Total

0.00%

Figura 60. Ribaltamento di cunei – Fronte Est

Figura 61. Ribaltamento flessurale – Fronte Est

Lo scivolamento di cunei (interessato dall'intersezione di SO-F3 e F2-F3) è stato identificato come il meccanismo di crollo più critici.

10.2.2 Verifica stabilità fronte roccioso in assenza di interventi

• Scivolamento dei cunei

Lo scivolamento dei cunei è stato analizzato considerando i giunti S0-F3 e F2-F3, come identificato dall'analisi con DIPS. L'analisi è stata effettuata con SWedge (Rocscience Inc.).

- <u>SO-F3</u>

Figura 62. Analisi di stabilità – Scivolamento di cunei – S0 e F3 – SLU

La verifica risulta non soddisfatta in assenza di interventi essendo FS=0.81<1.1

Figura 63. Analisi di stabilità – Scivolamento di cunei – S0 e F3 – SLV

-

F2-F3

La verifica risulta non soddisfatta in assenza di interventi essendo FS=0.83<1.1

Figura 64. Analisi di stabilità – Scivolamento di cunei – F2 e F3 – SLU

La verifica risulta non soddisfatta in assenza di interventi essendo FS=0.15<1.1

Figura 65. Analisi di stabilità – Scivolamento di cunei – F2 e F3 – SLV

La verifica risulta non soddisfatta in assenza di interventi essendo FS=0.0<1.1

10.2.3 Sostegni in roccia

Chiodi DYWIDAG

Gli interventi di stabilizzazione nel fronte roccioso a Est sono presentati di seguito. Per le seguenti verifiche sono stati considerati dei chiodi di diametro ϕ 28 con lunghezza 4.5m, inclinazione di 10° e maglia di 2.5mx2.5m con le seguenti caratteristiche:

ti tecnici							
iodi GEWI®	[₽] / Bulloni da roo	ccia, Barre B5	00B & S555/70	D			
Diametro nominale Ø	Tensione snerv. / rottura f _{0,2k} /f _{tk}	Sezione trasversale A	Carico snervamento F _{yk}	Carico ultimo F _{tk}	Peso	Peso DCP	Omolog.
[mm]	[N/mm²]	[mm²]	[kN]	[kN]	[kg/m]	[kg/m]	
16	500/550	201	101	111	1.58	5.2	0
20	500/550	314	157	173	2.47	5.9	0
25	500/550	491	245	270	3.85	7.0	0
28	500/550	616	308	339	4.83	8.6	0
32	500/550	804	402	442	6.31	9.5	0
40	500/550	1,257	628	691	9.86	13.6	0
50	500/550	1,963	982	1,080	15.41	21.0	0
63.5	555/700	3,167	1,758	2,217	24.86	32.4	0

Figura 66. Chiodi DYWIDAG – Parametri

Considerando tale maglia (2.5mx2.5m), il numero di chiodi in 1m² sono 0.16chiodi/m².

Sul software di calcolo (SWedge) è stata applicata una forza equivalente alle caratteristiche del chiodo sopra descritti.

Si prevede anche una rete elettrosaldata su tutta l'estensione del fronte Est per prevenire distacchi di blocchi di piccole dimensioni.

• Scivolamento di cunei

Per la verifica dello scivolamento di cunei è stato considerato il meccanismo più critico (S0-F3), la forza risulta applicata in una estensione di 12.93m² (Area cuneo instabile nel fronte di scavo). Considerando 0.16chiodi/m² e il carico di snervamento dei φ 28 pari a F_{yk}=308 kN, è stata applicata una forza pari a:

F=F_{yk} x numero di chiodi = (308 kN) x (12.93 m2 x 0.16 chiodi/m²) = 637 kN

Figura 67. Analisi di stabilità – Scivolamento di cunei – S0 e F3 – SLU

La verifica risulta soddisfatta essendo FS=3.2>1.1

Figura 68. Analisi di stabilità – Scivolamento di cunei – S0 e F3 – SLV

La verifica risulta soddisfatta essendo FS=1.6>1.1

10.1 Sintesi dei risultati

Come si evince dai risultati della verifica di stabilità dei fronti rocciosi, la stabilità è verificata considerando un minimo di chiodi in roccia di diametro ϕ 28, lunghezza 4.5m, inclinazione 10° e maglia di 2.5mx2.5m. Inoltre, in maniera cautelativa si predispone una rete metallica saldata chiodata di protezione su tutta l'estensione dello scavo in roccia per evitare eventuali distacchi e crolli da tale fronte.

11. VERIFICA STABILITÀ GLOBALE FRONTE ROCCIOSO IN ZONA DI FRANA

La stabilità globale del fronte roccioso residuo delle attività di coltivazione in una zona di cava ad Ovest dell'intervento è stata valutata, considerando come sezione di calcolo la sezione con le pendenze più elevate.

Figura 69. Sezione di calcolo – Stabilità globale fronte roccioso

Per le verifiche di stabilità ci si è avvalsi del software di calcolo SLIDE2 (Rocscience Inc.). Le verifiche sulla stabilità sono state condotte con il metodo dell'equilibrio limite implementato (nel software utilizzato) con la formulazione di Morgenstern & Price.

In considerazione del contesto geotecnico sostanzialmente omogeneo ed isotropo vengono analizzate superfici di scorrimento circolari. Considerato lo scopo dell'analisi le superfici di scorrimento indagate sono limitate alla sola scarpata di monte della paratia evitando di verificare superfici di scivolamento non rappresentative della condizione reale. Le analisi sono condotte mediante il metodo dell'equilibrio limite implementato (nel software utilizzato) con la formulazione di Morgenstern & Price.

I risultati sono espressi in termini di rapporto tra la resistenza al taglio disponibile e quella mobilitata lungo le superfici di scorrimento analizzate. In tabella sono riportati i gradi di sovra resistenza (R_d/E_d) rispetto alle azioni sollecitanti di progetto E_d (= $E \cdot \gamma_E$) ottenuti secondo la formulazione di Morgenstern & Price e per ciascuna combinazione delle azioni.

Eseguendo il calcolo mediante il D.M. 17/01/2018, Approccio 1 - Combinazione 2: (A2+M2+R2), il coefficiente parziale y_R vale 1,1; quindi considerando la resistenza di progetto $R_d = R/R_{\gamma}$ (cfr. § 6.2.3.1), risulta sempre verificata la disuguaglianza:

 $\mathsf{E}_{\mathsf{d}} \leq \mathsf{R}_{\mathsf{d}}$

per cui la verifica di stabilità globale può considerarsi soddisfatta.

È stata analizzata sia la condizione statica che quella sismica. Nelle figure di seguito si riportano le superfici critiche di scorrimento nei casi analizzati.

Figura 70. Modello di calcolo e superficie di scorrimento critica SLU GEO

La verifica risulta soddisfatta essendo FS=1.452>1.1

Figura 71. Modello di calcolo e superficie di scorrimento critica SLV +

La verifica risulta soddisfatta essendo FS=1.738>1.1

Figura 72. Modello di calcolo e superficie di scorrimento critica SLV -

La verifica risulta soddisfatta essendo FS=1.755>1.1

Come si evince dai risultati della verifica di stabilità globale, la stabilità del fronte roccioso è verificata in assenza di specifici interventi; tuttavia, si predispone in maniera cautelativa una rete metallica saldata chiodata di protezione su tutta l'estensione del fronte roccioso (Figura 7) per evitare eventuali distacchi e crolli da tale fronte.

12. CONCLUSIONI

Nel presente elaborato è stata affrontata la progettazione dell'opera di sostegno necessaria per sostenere lo scavo per la realizzazione del parcheggio di interscambio presso la cava Montanasco a Molassana, prevedendo:

- Paratia di micropali tirantata su 2 ordini, con micropali di diametro 168.30mm, spessore 10mm e interasse 0.35m, incastrati in roccia di 2m.
- Tiranti attivi con passo costante di 2.1m e inclinazione di 20°, composti da 3 trefoli con un diametro di bulbo di 16cm. Il primo ordine è previsto con una lunghezza libera di 6m e una lunghezza del bulbo di 10m; per il secondo ordine è previsto una lunghezza libera di 5m e una lunghezza del bulbo di 5m (garantendo l'ancoraggio in roccia). Il pretiro è previsto pari a 200kN.
- Chiodi in roccia di diametro φ28mm di lunghezza 4.5m inclinati 10° e da una rete metallica aderente ai fini di evitare distacchi di blocchi di piccole dimensioni nello scavo in roccia;
- Rete metallica saldata chiodata di protezione su tutta l'estensione del fronte roccioso residuo delle attività di coltivazione ad Ovest dell'intervento.

Tutte le verifiche strutturali e geotecniche risultano soddisfatte secondo i margini prescritti dalla Normativa.

Per l'approfondimento e verifica della soluzione progettuale proposta, nelle fasi successive del progetto è prevista una campagna di indagini in situ integrativa, mirata a confermare e acquisire un quadro conoscitivo più approfondito relativo allo spessore e le caratteristiche geotecniche delle coperture, alla tipologia, e lo stato di fratturazione dell'ammasso roccioso, al comportamento sismico e allo studio della falda.